奇偶剪枝

明天再详细补充。。。百度百科粘过来的

 

奇偶剪枝是数据结构的搜索中,剪枝的一种特殊小技巧。

描述

现假设起点为(sx,sy),终点为(ex,ey),给定t步恰好走到终点,

s

    

|

    

|

    

|

    

+

e

如图所示(“|”竖走,“—”横走,“+”转弯),易证abs(ex-sx)+abs(ey-sy)为此问题类中任意情况下,起点到终点的最短步数,记做step,此处step1=8;

s

 
 

+

 

|

+

   

|

    

+

e

如图,为一般情况下非最短路径的任意走法举例,step2=14;

step2-step1=6,偏移路径为6,偶数(易证);

结论

编辑

推广之,若 t-[abs(ex-sx)+abs(ey-sy)] 结果为非偶数(奇数),则无法在t步恰好到达;

返回,false;

反之亦反。

原理补充

编辑

鉴于很多同学对奇偶剪枝根本原理的兴趣,所以hj决定再补充一下本词条。

还是以这个为例子吧,现在我把矩阵填满 0 和 1 [1] 

0

1

0

1

0
1

0

1

0

1

0

1

010

1

0101

0

1

0

1

0

我们现假设从 0 开始走,则不难证明,

从任意 0 走到任意 1 始终是奇数步;

从任意 0 走到任意 0 始终是偶数步;

引用描述里的“例子”, s 到 e 的最短步数为 t (当然你也可以理解成此时到终点刚好剩余 t 步等等)。

则,我们从 s 到 e 的步数之和(或者说总距离)总可以表示成 sum= t + extra ( extra>=0 ),其中 extra 表示额外的步数。[2] 

比如“例子”里面的,做例1吧

s

 
 

+

 

|

+

   

|

    

+

e

此时 t=8,sum=14,所以我们容易得到 extra=6。也就是说按照这个走法,需要在最短的步数上再走额外的 6 步(先不用太在意这些偏移是在什么地方产生的)。

在来一个例2吧,

s

 
 

+

 

|

+

   

|

 +e

+

  

此时,t=7,sum=15,所以我们也容易得到 extra=8。

根据理科生的天性,由这两个一般性的例子,我们很容易嗅察到 extra 都为偶数。先带着疑惑,

再来看我给的 0 、1 矩阵。

0

1

0

1

0
1

0

1

0

1

0

1

010

1

0101

0

1

0

1

0

设左上角坐标为(1,1),右下角坐标为(5,5).

那么我们给的例1,

起点 s 的坐标为(1,1),此点为“0”;

终点 e 为(5,5),此点为“0”。

所以t=8,为偶数。

现在我们再倒过来看,从终点(也就是 e )出发,把最短步数 t=8 耗费掉,不妨这样走,

s

   +
   

+

   | 
  + 
  

e

如图所示从 e (5,5)耗费 8 步走到了(1,5)点。

因为是从 0 走偶数步,所以走到的坐标也一定是 0 ,就像这里的(1,5)点是 0 一样。

这是一个递归的过程,首先如果从0开始,目的地也是0,那末其中的最短距离t必然是个偶数,可其中有可能有障碍物或需要绕弯的情况,那末我们就现将最短距离t用于绕弯,从开始的0,走t步不管怎么走都只能到0,而这个0到终点0的最短路径t也必然是偶数,一直递归下去,直到你绕够了到达终点,这中间你额外的步数都是偶数。

注意到,(1,5)点和起点 s (1,1)都是 0,也就是说,这个 extra 必然是偶数!

再看例2,同样从终点 e 开始耗费 t=7 步,

则所到的点一定是 0 (不管她在哪里),再从这个点回到起点 s ,所用的 extra 也必然是个偶数!

所以无论如何,sum= t + extra ( extra>=0 ) 中的 extra 都是一个偶数

那么我们就可以用公式 t-[abs(ex-sx)+abs(ey-sy)] 计算出extra是否为偶数来判断当前点能否恰好在这么多步到达终点了。

有的同学可能会说以 1 为 起点呢。。其实是一样的啦,自己去捣鼓吧。

现在明白了么。。那么我再给个经典的实例吧,自己去试着做一下 ZOJ 2110 或者 HDU 1010。

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值