机器学习数学基础

一、学习任务

  1. 解释微分、梯度的含义? 什么是梯度下降法?
    1)用梯度下降法手工求解
    在这里插入图片描述

2)在Excel里用牛顿法、或者梯度下降法求解 z=2(x-1)2+y2 的近似根。
2.线性回归可以用最小二乘法求解,也可以用梯度下降法求解。调试、运行并详细注解文中的梯度下降法求解回归方程的python代码,对获得的结果与最小二乘法的结果进行对比。调试、运行并详细注解文中的梯度下降法求解回归方程的python代码,对获得的结果与最小二乘法的结果进行对比。

二、学习内容

1.梯度下降法的一般求解步骤

在这里插入图片描述

2.梯度下降法手工求解极值

2.1.计算过程

在这里插入图片描述
2.
在这里插入图片描述
3.
在这里插入图片描述

3. Excel中利用梯度下降求解近似根

在这里插入图片描述
1.设置表格内容
在这里插入图片描述
2.设置(x,y)的初始值为(2,1)
3.其他表格输入计算公式
在这里插入图片描述
4.迭代结果
当学习率取0.1的时候,迭代2000多次仍旧没有出现函数值为0的情况,所以更改学习率为0.15
在这里插入图片描述

4.线性回归问题求解

4.1.最小二乘法

1.相关代码

from sklearn import linear_model        
import seaborn as sns
m = 20
X0 = ones((m, 1))
X1 = arange(1, m+1).reshape(m, 1) 
X = hstack((X0, X1)) 
Y = np.array([
	    3, 4, 5, 5, 2, 4, 7, 8, 11, 8, 12,
	    11, 13, 13, 16, 17, 18, 17, 19, 21
	]).reshape(m, 1)

2.线性回归

model = linear_model.LinearRegression()
model.fit(X1,Y) 
print("斜率=",model.coef_[0])
print("截距为=",model.intercept_)

在这里插入图片描述
3.结果绘制

def plot(X, Y, theta):
    ax = plt.subplot(111)  
    ax.scatter(X, Y, s=30, c="blue", marker="s")
    plt.xlabel("X")
    plt.ylabel("Y")
    x = arange(0, 21, 0.2) 
    y =  model.intercept_+ model.coef_[0]*x
    ax.plot(x, y)
    plt.show()
plot(X1, Y, model.coef_[0])

在这里插入图片描述

4.2.梯度下降法

1.代价函数
在这里插入图片描述
2.相关代码

from numpy import *
m = 20
X0 = ones((m, 1)) 
X1 = arange(1, m+1).reshape(m, 1)  
X = hstack((X0, X1))  
Y = np.array([
    3, 4, 5, 5, 2, 4, 7, 8, 11, 8, 12,
    11, 13, 13, 16, 17, 18, 17, 19, 21
]).reshape(m, 1)
alpha = 0.01
import matplotlib.pyplot as plt
plt.scatter(X1,Y,color='red')
plt.show()

3.绘制结果
在这里插入图片描述
4.代价函数定义及代价函数的梯度函数

def cost_function(theta, X, Y):
    diff = dot(X, theta) - Y  # dot() 
    dot()
    return (1/(2*m)) * dot(diff.transpose(), diff)
    
def gradient_function(theta, X, Y):
    diff = dot(X, theta) - Y
    return (1/m) * dot(X.transpose(), diff)

梯度下降迭代

# 梯度下降迭代
def gradient_descent(X, Y, alpha):
    theta = array([1, 1]).reshape(2, 1)
    gradient = gradient_function(theta, X, Y)
    while not all(abs(gradient) <= 1e-5):
        theta = theta - alpha * gradient
        gradient = gradient_function(theta, X, Y)
    return theta
optimal = gradient_descent(X, Y, alpha)
print('optimal:', optimal)
print('cost function:', cost_function(optimal, X, Y)[0][0])

在这里插入图片描述
5.线性结果绘制
相关代码

def plot(X, Y, theta):
    ax = plt.subplot(111) 
    ax.scatter(X, Y, s=30, c="red", marker="s")
    plt.xlabel("X")
    plt.ylabel("Y")
    x = arange(0, 21, 0.2) 
    y = theta[0] + theta[1]*x
    ax.plot(x, y)
    plt.show()
plot(X1, Y, optimal)

结果
在这里插入图片描述

三、参考资料

深入浅出–梯度下降法及其实现
梯度下降算法原理讲解——机器学习

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值