无线信道测量技术与方法详解
1. 高分辨率参数估计算法
高分辨率参数估计旨在使算法具备区分多个紧密间隔和/或相关传播路径的能力。当前广泛使用的高分辨率技术主要包括子空间方法、最大似然方法和序贯估计方法。
1.1 子空间方法
子空间方法依赖于模型(2.5),并额外假设 (h_s(\Theta_p) \sim CN(0, R_S))。数据协方差矩阵的特征值分解如下:
(\tilde{R} = E[\tilde{h}\tilde{h}^H] = U\Lambda U^H = U_s\Lambda_s U_s^H + U_w\Lambda_w U_w^H) (2.9)
其中,(U_s \in C^{\tilde{M} \times P}) 和 (\Lambda_s \in R^{P \times P}) 表示与 (P) 个信号源的信号子空间相关的特征向量和特征值,而 (U_w \in C^{\tilde{M} \times (\tilde{M} - P)}) 和 (\Lambda_w \in R^{(\tilde{M} - P) \times (\tilde{M} - P)}) 表示噪声子空间的特征向量和特征值,噪声子空间与信号子空间正交。符号 (\tilde{M} \leq M) 表示向量 (\tilde{h}) 的长度,它可能只是完整数据模型的一个子集。
子空间方法的局限性在于需要足够多的实现来获得可靠的子空间估计。ESPRIT 仅适用于阵列几何结构,其中阵列可分为多个等间距且相同的子阵列。
以下是子空间方法的相关应用示例:
- 多维酉ESPRIT算法 :用于非平稳SIMO
超级会员免费看
订阅专栏 解锁全文
589

被折叠的 条评论
为什么被折叠?



