12、无线信道测量与数据处理技术详解

无线信道测量与数据处理技术详解

1. 信道测量概述

在视距(LOS)和非视距(NLOS)情况下,对大型开放式办公室进行了信道测量。相关研究分析了功率角度延迟分布(PADP)、复合和每簇的延迟扩展(DS)与角度扩展(AS)、簇数量以及簇内射线数量等。华北电力大学的熊文赵等人测量了 26GHz 和 39.5GHz 频段的阻挡衰减,采用 Vogler 的多刃峰绕射(KED)模型来模拟阻挡效应,发现 26GHz 频段的损耗小于 39.5GHz 频段。

2. 信道数据处理

在信道探测中,测量数据(即接收信号)是发射信号经过多条具有不同延迟、增益和方向的路径后的叠加。信道数据处理主要包括两个方面:路径参数提取和信道统计分析。
- 路径参数提取 :使用高分辨率参数估计算法从接收信号中提取每条路径的参数,如复振幅、延迟、到达角、离开角、多普勒频移等。
- 信道统计分析 :进一步分析提取的路径参数,找出被探测信道的统计特性和描述。

3. 路径参数提取算法

常用的信道参数提取算法主要分为两类:基于子空间的方法和最大似然方法。
|算法类别|具体算法|
| ---- | ---- |
|基于子空间的方法|多重信号分类(MUSIC)算法、旋转不变技术信号参数估计(ESPRIT)算法及其变体酉 ESPRIT 算法等|
|最大似然方法|期望最大化(EM)算法、空间交替广义 EM(SAGE)算法、频域 SAGE(FD - SAGE)算法、稀疏变分贝叶斯 SAGE(SVB - SAGE)算法、Richter 的最大似然参数估计框架(

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析仿真验证相结合。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值