独立行样本协方差矩阵与各向同性、对数凹随机向量的分析
在随机矩阵理论中,独立行样本协方差矩阵以及各向同性、对数凹随机向量的研究具有重要意义。下面将详细探讨这些内容。
1. 独立行样本协方差矩阵
1.1 各向同性位置的概念
首先引入各向同性位置的概念。设 $K$ 是 $\mathbb{R}^n$ 中的一个凸对称集,且内部非空。若对于任意的 $y \in \mathbb{R}^n$,有 $\frac{1}{\text{vol}(K)} \int_{K} |\langle y, x \rangle|^2 dx = |y|^2$,其中体积和积分是关于 $\mathbb{R}^n$ 上的勒贝格测度,$\langle \cdot, \cdot \rangle$ 和 $|\cdot|$ 分别是欧几里得空间 $\ell_n^2$ 中的标量积和范数,那么称 $K$ 处于各向同性位置。换句话说,如果考虑 $K$ 上的归一化体积测度,且 $x$ 是具有该分布的随机向量,那么对于任意的 $y \in \mathbb{R}^n$,有 $E|\langle y, x \rangle|^2 = |y|^2$。
设 $x$ 是 $\mathbb{R}^n$ 上的随机向量,${x_i} {i = 1}^N$ 是 $N$ 个独立的随机向量,且分布与 $x$ 相同。定义随机算子 $X : \mathbb{R}^n \to \mathbb{R}^N$ 为:
[
X =
\begin{bmatrix}
x_1^T \
x_2^T \
\vdots \
x_N^T
\end{bmatrix} {N\
超级会员免费看
订阅专栏 解锁全文
2705

被折叠的 条评论
为什么被折叠?



