23、独立行样本协方差矩阵与各向同性、对数凹随机向量的分析

独立行样本协方差矩阵与各向同性、对数凹随机向量的分析

在随机矩阵理论中,独立行样本协方差矩阵以及各向同性、对数凹随机向量的研究具有重要意义。下面将详细探讨这些内容。

1. 独立行样本协方差矩阵
1.1 各向同性位置的概念

首先引入各向同性位置的概念。设 $K$ 是 $\mathbb{R}^n$ 中的一个凸对称集,且内部非空。若对于任意的 $y \in \mathbb{R}^n$,有 $\frac{1}{\text{vol}(K)} \int_{K} |\langle y, x \rangle|^2 dx = |y|^2$,其中体积和积分是关于 $\mathbb{R}^n$ 上的勒贝格测度,$\langle \cdot, \cdot \rangle$ 和 $|\cdot|$ 分别是欧几里得空间 $\ell_n^2$ 中的标量积和范数,那么称 $K$ 处于各向同性位置。换句话说,如果考虑 $K$ 上的归一化体积测度,且 $x$ 是具有该分布的随机向量,那么对于任意的 $y \in \mathbb{R}^n$,有 $E|\langle y, x \rangle|^2 = |y|^2$。

设 $x$ 是 $\mathbb{R}^n$ 上的随机向量,${x_i} {i = 1}^N$ 是 $N$ 个独立的随机向量,且分布与 $x$ 相同。定义随机算子 $X : \mathbb{R}^n \to \mathbb{R}^N$ 为:
[
X =
\begin{bmatrix}
x_1^T \
x_2^T \
\vdots \
x_N^T
\end{bmatrix}
{N\

先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值