河流(题解)

在Byteland王国,国王计划在河流沿岸的村庄建立额外的伐木场以减少木料运输费用。该问题转化为在树形结构中寻找最小成本的伐木场布局,每个节点表示一个村庄,边表示河流连接。通过动态规划解决此问题,考虑每个村庄是否作为伐木场,并计算总成本。最终输出最小成本。
摘要由CSDN通过智能技术生成

题目描述


  几乎整个Byteland 王国都被森林和河流所覆盖。小点的河汇聚到一起,形成了稍大点的河。就这样,所有的河水都汇聚并流进了一条大河,最后这条大河流进了大海。这条大河的入海口处有一个村庄——Bytetown。   在Byteland国,有n个伐木的村庄,这些村庄都座落在河边。目前在Bytetown,有一个巨大的伐木场,它处理着全国砍下的所有木料。木料被砍下后,顺着河流而被运到Bytetown的伐木场。Byteland 的国王决定,为了减少运输木料的费用,再额外地建造k个伐木场。这k个伐木场将被建在其他村庄里。这些伐木场建造后,木料就不用都被送到Bytetown了,它们可以在 运输过程中第一个碰到的新伐木场被处理。显然,如果伐木场座落的那个村子就不用再付运送木料的费用了。它们可以直接被本村的伐木场处理。 注:所有的河流都不会分叉,形成一棵树,根结点是Bytetown。   国王的大臣计算出了每个村子每年要产多少木料,你的任务是决定在哪些村子建设伐木场能获得最小的运费。其中运费的计算方法为:每一吨木料每千米1分钱。   编一个程序:   1.从文件读入村子的个数,另外要建设的伐木场的数目,每年每个村子产的木料的块数以及河流的描述。   2.计算最小的运费并输出。

输入格式


  第一行包括两个数n(2<=n<=100),k(1<=k<=50,且k<=n)。n为村庄数,k为要建的伐木场的数目。除了Bytetown 外,每个村子依次被命名为 1,2,3……n,Bytetown被命名为0。   接下来n行,每行3个整数:   wi——每年 i 村子产的木料的块数。(0<=wi<=10000)   vi——离 i 村子下游最近的村子。(即 i 村子的父结点)(0<=vi<=n)   di——vi 到 i 的距离(千米)。(1<=di<=10000)   保证每年所有的木料流到bytetown 的运费不超过2000,000,000分   50%的数据中n不超过20。

输出格式


输出最小花费,精确到分。

样例数据


input
4 2
1 0 1
1 1 10
10 2 5
1 2 3

output
4

Solution


典型的树形DP。那么我们来想想怎么设置状态?

刚开始我想的是设f[u][j]表示根节点为u的时候建造j个伐木场的最小代价。但是我们无法表示根节点是否建造伐木场,后来想着的是增加一维0/1表示根节点是否建造伐木场。但是发现无法求出价值。

最后经过一系列的思考……

我们设f[u][v][j]表示根节点为u的时候建造j个伐木场,到最近的村子(包括v)的最小代价。那么状态转移方程就很好列出了。

我们分两种情况讨论:
1.当根节点不建造伐木场的时候
f[u][v][j]=min(f[lc][v][[

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值