题目描述
几乎整个Byteland 王国都被森林和河流所覆盖。小点的河汇聚到一起,形成了稍大点的河。就这样,所有的河水都汇聚并流进了一条大河,最后这条大河流进了大海。这条大河的入海口处有一个村庄——Bytetown。 在Byteland国,有n个伐木的村庄,这些村庄都座落在河边。目前在Bytetown,有一个巨大的伐木场,它处理着全国砍下的所有木料。木料被砍下后,顺着河流而被运到Bytetown的伐木场。Byteland 的国王决定,为了减少运输木料的费用,再额外地建造k个伐木场。这k个伐木场将被建在其他村庄里。这些伐木场建造后,木料就不用都被送到Bytetown了,它们可以在 运输过程中第一个碰到的新伐木场被处理。显然,如果伐木场座落的那个村子就不用再付运送木料的费用了。它们可以直接被本村的伐木场处理。 注:所有的河流都不会分叉,形成一棵树,根结点是Bytetown。 国王的大臣计算出了每个村子每年要产多少木料,你的任务是决定在哪些村子建设伐木场能获得最小的运费。其中运费的计算方法为:每一吨木料每千米1分钱。 编一个程序: 1.从文件读入村子的个数,另外要建设的伐木场的数目,每年每个村子产的木料的块数以及河流的描述。 2.计算最小的运费并输出。
输入格式
第一行包括两个数n(2<=n<=100),k(1<=k<=50,且k<=n)。n为村庄数,k为要建的伐木场的数目。除了Bytetown 外,每个村子依次被命名为 1,2,3……n,Bytetown被命名为0。 接下来n行,每行3个整数: wi——每年 i 村子产的木料的块数。(0<=wi<=10000) vi——离 i 村子下游最近的村子。(即 i 村子的父结点)(0<=vi<=n) di——vi 到 i 的距离(千米)。(1<=di<=10000) 保证每年所有的木料流到bytetown 的运费不超过2000,000,000分 50%的数据中n不超过20。
输出格式
输出最小花费,精确到分。
样例数据
input
4 2
1 0 1
1 1 10
10 2 5
1 2 3
output
4
Solution
典型的树形DP。那么我们来想想怎么设置状态?
刚开始我想的是设f[u][j]表示根节点为u的时候建造j个伐木场的最小代价。但是我们无法表示根节点是否建造伐木场,后来想着的是增加一维0/1表示根节点是否建造伐木场。但是发现无法求出价值。
最后经过一系列的思考……
我们设f[u][v][j]表示根节点为u的时候建造j个伐木场,到最近的村子(包括v)的最小代价。那么状态转移方程就很好列出了。
我们分两种情况讨论:
1.当根节点不建造伐木场的时候
f[u][v][j]=min(f[lc][v][[