【Lucas定理 && C(n, m)%p && 逆元】FZU - 2020 组合

Problem Description

求C(n,m) mod p的结果, 其中p是素数

思路: 参考博客

求逆元
a*x ≡ 1(mod p)。
因为p是素数,所以我们求逆元可以用费马小定理 和 欧拉定理
a^(p-1) ≡ 1(mod p) -> a * a^(p-2) ≡ 1(mod p)。所以a^(-1) = a^(p-2)

还有一种通用的求逆元方法,适合所有情况 或者 扩展欧几里得。公式如下
这里写图片描述
现在我们来证明它,已知,证明步骤如下
这里写图片描述
Lucas定理
这里写图片描述
那么得到
这里写图片描述
这样然后分别求,采用逆元计算即可。

#include<cstdio>
using namespace std;
#define ll long long
ll p, n, m;//oj问题不定义全局就超时
ll Pow(ll a, ll n)//快速幂
{
    ll sum = 1;
    while(n)
    {
        if(n&1) sum = sum*a % p;
        a = a*a % p;
        n >>= 1;
    }
    return sum;
}
ll C(ll n, ll m)//c(n,m)
{
    ll a = 1, b = 1;
    if(m > n) return 0;
    if(m > n/2) {
        m = n-m;
    }
    for(ll i = 1; i <= m; i++)
    {
        a = a*((n+i-m)%MOD) % MOD;
        b = b*(i%MOD) % MOD;
    }
    return (a*Pow(b, MOD-2)%MOD)%MOD;//a*b^(-1)%MOD
}
ll Lucas(ll n, ll m)//Lucas定理
{
    if(!m) return 1;
    return C(n%p, m%p) * Lucas(n/p, m/p) % p;
}
int main()
{
    int T;
    scanf("%d", &T);
    while(T--)
    {
        scanf("%lld %lld %lld", &n, &m, &p);
        printf("%lld\n", Lucas(n, m));//这里不用Lucas定理也能AC
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值