使用 Isotonic Regression 校准分类器
21 December 20151. 引言对有监督机器学习问题,通常的训练流程包括这样几步:先建立起模型,然后在训练集上训练模型,如果有超参数,还需要在验证集上应用交叉验证以确定超参数,总之最终会得到一个模型。在这样的流程下,不断优化模型,如果在测试集上取得了较高的准确率、召回率、F-score或者AUC后,那事情就结束了吗,模型的输出结果是符合需要的吗?这并不一定。当给定一个样本,大部分分类器能够输出该样本属于某类的分数,通常这个分数介于0到1之间,我们称之为概率,严格来讲,是后验概率,数学上
转载
2021-01-11 15:18:55 ·
589 阅读 ·
0 评论