meta learning
张博208
知识搬运工
展开
-
Prototypical Networks
https://zhuanlan.zhihu.com/p/73379519原创 2020-09-30 11:16:58 · 184 阅读 · 0 评论 -
Relation Network
https://blog.csdn.net/jesseyule/article/details/103808718转载 2020-09-30 11:07:05 · 253 阅读 · 0 评论 -
Matching networks
https://www.cnblogs.com/veagau/p/12164335.htmlhttps://zhuanlan.zhihu.com/p/32101204https://blog.csdn.net/bryant_meng/article/details/80662322原创 2020-09-30 11:03:45 · 237 阅读 · 0 评论 -
Siamese network 孪生神经网络--一个简单神奇的结构
名字的由来Siamese和Chinese有点像。Siam是古时候泰国的称呼,中文译作暹罗。Siamese也就是“暹罗”人或“泰国”人。Siamese在英语中是“孪生”、“连体”的意思,这是为什么呢?十九世纪泰国出生了一对连体婴儿,当时的医学技术无法使两人分离出来,于是两人顽强地生活了一生,1829年被英国商人发现,进入马戏团,在全世界各地表演,1839年他们访问美国北卡罗莱那州后来成为“玲玲马戏团” 的台柱,最后成为美国公民。1843年4月13日跟英国一对姐妹结婚,恩生了10个小孩,昌生了12个,姐转载 2020-09-30 10:46:13 · 860 阅读 · 0 评论 -
元学习: 学习如何学习【译】
https://wei-tianhao.github.io/blog/2019/09/17/meta-learning.html转载 2020-09-30 10:43:18 · 102 阅读 · 1 评论 -
Cross-stitch Networks for Multi-task Learning
Cross-stitch Networks for Multi-task LearningCross-stitch Networks for Multi-task Learning 1. 问题 2. 十字绣结构(Cross-stitch architecture) 3. 实验设计 1. 问题假设我们有任务A和B,并且这两个任务存在一定的关联性。最常见的做法是:对相同的输入,A和B共享同一个输入特征提取网络,然后在同样的特征上,各自单独训练,得到最终结果。至于在哪里分开(独立),我们转载 2020-08-23 12:00:16 · 1322 阅读 · 0 评论 -
Model-Agnostic Meta-Learning (MAML)模型介绍及算法详解
https://zhuanlan.zhihu.com/p/57864886https://zhuanlan.zhihu.com/p/66926599https://blog.csdn.net/liz_Lee/article/dehttps://zhuanlan.zhihu.com/p/114184963tails/100031322原创 2020-08-18 11:21:34 · 1004 阅读 · 0 评论