洛谷 T444199 Matrix 题解 分治

Matrix

题目描述

对于两个 n n n 阶矩阵 A , B A,B A,B,定义矩阵乘法 C = A ∗ B C=A*B C=AB,则 C i j = ∑ k = 1 n A i k B k j C_{ij}=\sum_{k=1}^n{A_{ik}B_{kj}} Cij=k=1nAikBkj;定义矩阵加法 C = A + B C=A+B C=A+B,则 C i j = A i j + B i j C_{ij}=A_{ij}+B_{ij} Cij=Aij+Bij

定义矩阵的幂 A k = A ∗ A ∗ . . ∗ A ( 共 k 个 A ) A^k=A*A*..*A(共k个A) Ak=AA..A(kA)

给一个 n n n 阶矩阵 A A A 和整数 k k k,求 A + A 2 + A 3 + . . . + A k A+A^2+A^3+...+A^{k} A+A2+A3+...+Ak,答案对 998244353 998244353 998244353 取模

输入格式

第一行两个整数 n , k n,k n,k,表示矩阵大小以及 k k k

接下来 n n n 行,每行 n n n 个整数,表示 A i , j A_{i,j} Ai,j

1 ≤ n ≤ 150 , 1 ≤ k ≤ 1 0 9 , 0 ≤ A i j ≤ 1 0 9 1≤n≤150,1≤k≤10^9,0≤A_{ij}≤10^9 1n150,1k109,0Aij109

输出格式

n n n 行,每行 n n n 个整数,表示 A + A 2 + A 3 + . . . + A k A+A^2+A^3+...+A^{k} A+A2+A3+...+Ak i i i 行第 j j j 列的值模 998244353 998244353 998244353 的结果

样例 #1

样例输入 #1

3 2
0 2 0
0 0 2
0 0 0

样例输出 #1

0 2 4
0 0 2
0 0 0

原题

洛谷——传送门

思路

我们可以采用二分的思想解决这道题目。例如k=7时, A + A 2 + A 3 + A 4 + A 5 + A 6 + A 7 = ( A + A 2 + A 3 ) ( E + A 4 ) + A 4 A+A^2+A^3+A^4+A^5+A^6+A^7=(A+A^2+A^3)(E+A^4)+A^4 A+A2+A3+A4+A5+A6+A7=(A+A2+A3)(E+A4)+A4。于是问题就转化为了求 A + A 2 + A 3 A+A^2+A^3 A+A2+A3。可以进一步二分,即 A + A 2 + A 3 = A ( A + A 2 ) + A 2 A+A^2+A^3=A(A+A^2)+A^2 A+A2+A3=A(A+A2)+A2。那么我们就可以写一个函数递归求解。但是我们发现在每一步递归中还需要知道 A(k+1)/2 的值。首先想到的固然是矩阵快速幂求,但是这会把时间复杂度从O(n3logk)变为O(n3log2k),经过我的亲身TLE, 发现这是不行的。其实,我们可以把A(k+1)/2 的值放到每一步递归中维护。详见代码。

代码

#include <bits/stdc++.h>
using namespace std;
#define max_Heap(x) priority_queue<x, vector<x>, less<x>>
#define min_Heap(x) priority_queue<x, vector<x>, greater<x>>
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;
typedef pair<long long, long long> PLL;
const double PI = acos(-1);

#define mod 998244353
struct Mat
{
    int m[151][151];
};
Mat a, e; // 读入矩阵和单位矩阵
ll n, p;
Mat Mul(Mat x, Mat y) // 矩阵乘
{
    Mat c;
    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= n; j++)
            c.m[i][j] = 0;
    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= n; j++)
            for (int k = 1; k <= n; k++)
            {
                c.m[i][j] = 1LL * c.m[i][j] % mod + 1LL * x.m[i][k] * y.m[k][j] % mod;
            }
    return c;
}
Mat Add(Mat x, Mat y) // 矩阵加
{
    for (int i = 1; i <= n; i++)
    {
        for (int j = 1; j <= n; j++)
        {
            x.m[i][j] = (1LL * x.m[i][j] + y.m[i][j]) % mod;
        }
    }
    return x;
}
// Mat Mat_Q_Pow(Mat x, ll y)
// {
//     Mat ans = e;
//     while (y)
//     {
//         if (y & 1)
//         {
//             ans = Mul(ans, x);
//         }
//         x = Mul(x, x);
//         y >>= 1;
//     }
//     return ans;
// }
Mat A;               // 递归过程中维护的Ai
Mat fuc(Mat x, ll k) // 二分递归求解
{
    Mat tmp, y;
    if (k == 1)
        return x;
    tmp = fuc(x, k / 2); // 递归
    if (k & 1)
    {
        // y = Mat_Q_Pow(x, k / 2 + 1);
        y = Mul(A, x);
        A = Mul(x, Mul(A, A));
        tmp = Add(Mul(y, tmp), tmp);
        return Add(tmp, y);
    }
    else
    {
        // y = Mat_Q_Pow(x, k / 2);
        y = A;
        A = Mul(A, A);
        return Add(Mul(y, tmp), tmp);
    }
}
int main()
{
    ios::sync_with_stdio(0);
    cin.tie(0);
    cout.tie(0);
    cin >> n >> p;
    for (int i = 1; i <= n; i++)
    {
        for (int j = 1; j <= n; j++)
        {
            cin >> a.m[i][j];
            A.m[i][j] = a.m[i][j];
        }
    }
    for (int i = 1; i <= n; i++) // 初始化单位矩阵
    {
        e.m[i][i] = 1;
    }
    Mat ans = fuc(a, p);
    for (int i = 1; i <= n; i++)
    {
        for (int j = 1; j <= n; j++)
        {
            if (j != n)
                cout << (ans.m[i][j] + mod) % mod << " ";
            else
                cout << (ans.m[i][j] + mod) % mod << "\n";
        }
    }
    return 0;
}
  • 15
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值