题目描述
题目描述
快速排序算法是在冒泡排序的基础上进行改进的一种算法,同样是一种交换排序,其实现的基本思想是:通过一次排序将整个无序表分成相互独立的两部分,其中一部分中的数据都比另一部分中包含的数据的值小,然后继续沿用此方法分别对两部分进行同样的操作,直到每一个小部分不可再分,所得到的整个序列就成为了有序序列。用于划分的两部分的枢轴(pivot)的选择方式为待排子序列的(left+right)/2 ,但需要再选择后交换到最后位置(参见教材中方法)。left和right分别为所在(子)序列中的最左位置和最右位置(最初待排序列的left从0开始)。
快速排序是不稳定排序。因此,本题目中的每个待排元素均由两个键码组成,分别是:主关键码(PrimaryKey),键码(Key)。
ps:通过键码(Key)的不同体现排序的稳定性。
输入格式
第一行,一个正整数size,表示待排序的元素的个数。n∈[1, 100000]
之后的每一行,有两个正整数,分别代表着组成待排元素的主关键码和键码,并以空格分隔。如:
10
2 0
19 0
0 1
0 2
5 0
18 0
18 0
0 0
8 0
11 0
输出格式
共size行,表示将输入的待排元素序列进行非递减次序(递增)排序后的结果,按照每个待排元素排序后应该所处次序由上到下排列。其中每行表示一个排序后的元素。如(输入参照上面输入格式中的举例):
0 0
0 2
0 1
2 0
5 0
8 0
11 0
18 0
18 0
19 0
代码如下
#include<iostream>
using namespace std;
struct kuaisu{
int a;
int b;
};
void swap(int *a,int *b){
int t;
t=*a;
*a=*b;
*b=t;
}
int partition(kuaisu *array,int left, int right){
//分割函数,分割后轴值已到达正确位置
int l = left;
int r = right; //i为左指针,j为右指针
kuaisu temp = array[r];
while( l != r ){
//左指针右移,越过小于等于轴值的记录
while( array[l].a <= temp.a && r > l ){
l++;
}
//将逆置元素换到右边的空位, 右指针向左移动
if( l < r ){
array[r] = array[l];
r--;
}
//右指针左移,越过大于等于轴值的记录
while( array[r].a >= temp.a && r > l ){
r--;
}
//将逆置元素换到左边的空位, 左指针向右移动
if( l < r ){
array[l] = array[r];
l++;
}
}
array[l]=temp;
return l; //返回分界位置
}
int selectPivot(int left, int right){
return (left + right) / 2;
}
void quickSort(kuaisu array[],int left, int right){
if(right <= left){ return; }
int pivot = selectPivot(left,right);//选择枢轴值
swap(array[pivot], array[right]);
pivot = partition(array,left,right);//对剩余的记录进行分割
quickSort(array,left,pivot-1);
quickSort(array,pivot+1,right);
}
int main(){
int n;
cin >> n;
kuaisu array[n];
int i;
for(i=0;i<n;i++){
cin >> array[i].a >> array[i].b;
}
quickSort(array,0,n-1);
for(i=0;i<n;i++){
cout << array[i].a<<" "<< array[i].b<<"\n";
}
return 0;
}