算法概论作业8.3

8.3 STINGY SAT is  the following problem: given a set of clauses ( each a disjunction of literals) and an integer k, find a satisfying assignment in which at most k variables are true, if such an assignment exists. Prove that STINGY SAT is NP-complete.


证明:

题目要求证明STINGY SAT是一个NP完全问题。STINGY SAT问题为:给定一组子句和一个整数k,如果存在的话,找到一个最多有k个变量为true的真值指派。

这个问题可以由SAT问题归约得到,事实上n个变量SAT问题就相当于k = n的STINGY SAT问题。

设x为一组赋值,若x是n个变量SAT问题的解,则显然x中值为true的变量数不会超过n,即最多只有k个变量为true,因此x也为k = n的STINGY SAT问题的解。同样的,若x为STINGY SAT问题的解,则其显然也为SAT问题的解。

可见SAT问题是很容易归约到STINGY SAT问题的,而且规约的时间复杂度为O(1),是多项式复杂度的。我们都知道SAT问题是NP完全问题,因此可知STINGY SAT问题也是一个NP完全问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值