Matplotlib学习笔记一

锵锵锵,今天学习Matplotlib,首先上中文官方文档。我们这次是在jupyter notebook里实现的,
import matplotlib.pyplot as plt %matplotlib inline #在notbook中显示所绘图像 plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签 plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号

举例plt.plot()常用参数

color

用以下方法查看,seaborn扩展库在字典seaborn.xkcd_rgb中包含了一些扩展的颜色,输入颜色名字对应该颜色的十六进制码

import seaborn
seaborn.xkcd_rgb
marker

定义点的样式,这里小白只写几个小白不常用但感觉比较好看的吧,像点直线虚线大家应该都会,这里就不写了

字符实例
‘h’六边形点1
‘H’六边形点2
‘d’瘦菱形点
‘D’实心菱形点
‘p’五角点
‘s’正方形点
‘1’下三叉点
‘2’上三叉点
‘3’左三叉点
‘4’右三叉点
linestyle

定义两点之间采用什么方式连接
以上三个参数可以放一起(若需要三参数一起运用则只能选8中颜色b,g,y,k,w,r,c,)

其他参数

linewidth:定义线的宽度(粗细)最多20
alpha:定义线条的透明度(线的深浅)范围0至1
drawstyle:定义描点绘制样式,例如一步一步画即drawstyle=‘steps’,有五种方式{‘default’,‘steps’,‘steps-pre’,‘steps-mid’,‘steps-post’}

常用的图像设置命令

plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode-minus']=False #用来正常显示负号

plt.title() #标题

plt.xlim() #括号里显示上下限,相当于放大

plt.ylim()

plt.xlabel() #x,y轴的名称,字符串

plt.ylabel()

plt.grid() #加网格线 linestyle简写ls,color简写c,宽度简写ld

plt.axhline() #绘制平行于x轴的水平参考线

plt.axvline() #绘制平行于y轴的水平参考线

plt.axhspan() #绘制垂直于y轴的水平区域 颜色要用facecolor

plt.axvspan() #绘制垂直于x轴的参考区域

plt.legend() #标示不同图形的文本标签图例
在这里插入图片描述

legend有许多参数,我们先学习三个分别是loc、edgecolor、facecolor
loc是图例的位置,支持整数和字符串
edgecolor是图例外框颜色
facecolor是图例框内填充颜色

plt.xticks() #设置x轴的标签名称

plt.yticks() #设置y轴的标签名称

plt.text() #添加图形内容细节的无指向型注释文本

plt.text(x,y,string,fontsize,verticalalignment,horizontalalignment,kwargs**)
x,y:表示坐标值上的值
string:表示说明文字
verticalalignment:垂直对齐方式 center top bottom baseline
horizontalalignment:水平对齐方式 center right left

plt.annotate() #添加图形内容细节的指向型注释文本
annotate详细的应用介绍

plt常见的二维图形绘制命令

plt.bar #柱状图
plt.barh #条形图
plt.hist #直方图
plt.pie #饼图
plt.polar #极线图
plt.scatter #散点图或气泡图
plt.stem #棉棒图
plt.boxplot #箱线图
plt.errorbar #误差棒图

plt其他函数命令

plt.gca() get current axes plt.plot()实际上通过该函数获得当前的axes对象ax,然后再调用ax.plot方法实现真正的绘图

plt.figure()创建figure对象

figure对象是后续绘图操作的总容器
figure(num=用的第几张纸或者纸的名字——默认顺着画,figsize=用元组表示纸的大小,dpi=分辨率默认为100,facecolor=作用的是纸的颜色,edgecolor=边缘颜色图形边框颜色,framon=False是否绘制图形外框架,clear=False图形已存在时是否清除原有图像)
在这里插入图片描述

plt.savefig(“路径eg:D:\XXX.jpg”)
plt.gcf() get current figure

举个栗子

import numpy as np
x = np.linspace(0,10,10)
y = np.cos(x)
y1 = np.sin(x)
plt.plot(x,y,'b*--',label='y=cos(x)')
plt.plot(x,y1,'c*--',label='y1=sin(x)')
plt.title('have a try')
plt.legend() #在plot中有lable时直接传入legend才有活干
plt.grid(ls=':',c='r')
plt.axhspan(0.55,0.75,facecolor='yellow',alpha=0.6)
plt.axvline(7,c='r',lw=1.5,ls='-.')
plt.annotate('the biggest',xy=(0,1),xytext=(0.8,1),arrowprops=dict(arrowstyle='->'))

在这里插入图片描述

#生成多序列条形图
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
index = np.arange(5)
data1 = [3,4,6,8,9]
data2 = [11,23,6,5,1]
data3 = [12,6,21,8,26]
a = 0.3
plt.title('multi bar chart')
plt.bar(index,data1,a,color='orange',label='a')
plt.bar(index+a,data2,a,color='y',label='b')
plt.bar(index+2*a,data3,a,color='g',label='c')
plt.legend(loc=2)
plt.show()

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值