线性代数笔记14--投影

1. 一维空间投影

在这里插入图片描述

p = X A e = B − p = B − X A A ⊤ e = 0 A ⊤ ( B − X A ) = 0 X A ⊤ A = A ⊤ B X = A ⊤ B A ⊤ A p = X A = A A ⊤ B A ⊤ A p=XA\\ e=B-p=B-XA\\ A^{\top}e=0\\ A^{\top}(B-XA)=0\\ XA^{\top}A=A^{\top}B\\ X=\frac{A^{\top}B}{A^{\top}A}\\ p=XA=A\frac{A^{\top}B}{A^{\top}A}\\ p=XAe=Bp=BXAAe=0A(BXA)=0XAA=ABX=AAABp=XA=AAAAB

相当于在B上作用了一个投影矩阵。假设大写 P P P为投影矩阵
p = P B = A A ⊤ A ⊤ A B p=PB=\frac{AA^{\top}}{A^{\top}A}B p=PB=AAAAB

因为列变换并不影响列空间,所以。

C ( p ) = C ( A ) = 通过 A 的直线 r a n k ( p ) = 1 C(p)=C(A)=通过A的直线\\ rank(p)=1 C(p)=C(A)=通过A的直线rank(p)=1
投影矩阵对称
( A A ⊤ A ⊤ A ) ⊤ = A A ⊤ A ⊤ A P ⊤ = P (\frac{AA^{\top}}{A^{\top}A})^{\top}= \frac{AA^{\top}}{A^{\top}A}\\ P^{\top}=P (AAAA)=AAAAP=P
投影矩阵只有一次的作用效果
P 2 = P P^{2}=P P2=P

2. 为什么要投影?

对于方程 A X = b AX=b AX=b, b b b可能不在 A A A的列空间上,这样就没有解了。
这时我们可以把 b b b投影到 A A A的列空间上来得到这个最可能的解。

A ^ X = p \hat{A}X=p A^X=p

在这里插入图片描述

A = [ a 1   a 2 ] e ⊥ A e = b − p p = A X ^ A=[a_1\ a_2]\\ e \perp A\\ e = b-p\\ p=A\hat{X} A=[a1 a2]eAe=bpp=AX^

a 1 ⊤ ( b − A X ^ ) = 0 a 2 ⊤ ( b − A X ^ ) = 0 [ a 1 ⊤ a 2 ⊤ ] ( b − A X ^ ) = 0    ⟺    A ⊤ ( b − A X ^ ) = 0 a_1^{\top}(b-A\hat{X})=0\\ a_2^{\top}(b-A\hat{X})=0\\ \begin{bmatrix} a_1^{\top}\\ a_2^{\top}\\ \end{bmatrix} (b-A\hat{X})=0 \iff A^{\top}(b-A\hat{X})=0 a1(bAX^)=0a2(bAX^)=0[a1a2](bAX^)=0A(bAX^)=0

e ∈ N ( A ⊤ ) e ⊥ C ( A ) e \in N(A^{\top})\\ e \perp C(A) eN(A)eC(A)

X ^ = ( A ⊤ A ) − 1 A ⊤ b p = A ( A ⊤ A ) − 1 A ⊤ b \hat{X}=(A^{\top}A)^{-1}A^{\top}b\\ p=A(A^{\top}A)^{-1}A^{\top}b X^=(AA)1Abp=A(AA)1Ab

投影矩阵
P = A ( A ⊤ A ) − 1 A ⊤ P=A(A^{\top}A)^{-1}A^{\top} P=A(AA)1A

投影矩阵性质

  • P ⊤ = P P^{\top}=P P=P

P ⊤ = ( A ⊤ ) ⊤ ( ( A ⊤ A ) − 1 ) ⊤ A ⊤ ( ( A ⊤ A ) − 1 ) ⊤ = ( ( A ⊤ A ) ⊤ ) − 1 = ( A ⊤ A ) − 1 P ⊤ = A ( A ⊤ A ) − 1 A ⊤ P^{\top}=(A^{\top})^{\top}((A^{\top}A)^{-1})^{\top}A^{\top}\\ ((A^{\top}A)^{-1})^{\top}=((A^{\top}A)^{\top})^{-1}=(A^{\top}A)^{-1}\\ P^{\top}=A(A^{\top}A)^{-1}A^{\top} P=(A)((AA)1)A((AA)1)=((AA))1=(AA)1P=A(AA)1A

  • P n = P P^n=P Pn=P

P P = A ( A ⊤ A ) − 1 A ⊤ A ( A ⊤ A ) − 1 A ⊤ = A ( A ⊤ A ) − 1 { A ⊤ A ( A ⊤ A ) − 1 } A ⊤ = A ( A ⊤ A ) − 1 A ⊤ PP=A(A^{\top}A)^{-1}A^{\top}A(A^{\top}A)^{-1}A^{\top}=\\ A(A^{\top}A)^{-1}\{A^{\top}A(A^{\top}A)^{-1}\}A^{\top}=\\ A(A^{\top}A)^{-1}A^{\top} PP=A(AA)1AA(AA)1A=A(AA)1{AA(AA)1}A=A(AA)1A

### 回答1: MIT(麻省理工学院)的线性代数公开课非常详细和全面,这门课程是由麻省理工学院的教授Gilbert Strang主讲的。课程内容涵盖了线性代数的基本概念和应用,将线性代数的理论与实践相结合。 这门课程的笔记非常详细,内容包括了课堂讲义、示例问题的详细解析、证明过程和习题答案等等。课程的整个结构非常清晰,从基础的向量、矩阵和行列式开始讲解,逐渐深入到线性方程组、特征值和特征向量、相似矩阵等内容。 在笔记中,每个概念和理论都会进行详细的解释和证明,帮助学生更好地理解和掌握相关知识。同时,笔记还提供了丰富的示例和习题,让学生通过实际的问题来巩固和应用所学知识。 另外,笔记中还有大量的图表、图示和实例来帮助学生直观地理解和记忆各种概念和算法。特别是对于抽象的概念,通过图形化的解释可以更好地帮助学生理解。 总之,MIT的线性代数公开课的笔记内容非常详细和全面,适合对线性代数感兴趣的学生参考。无论是作为学习线性代数的资料,还是作为复习和巩固知识的辅助材料,这些笔记都是非常有价值的资源。无论是在理论还是应用层面,学生都能够通过这些笔记全面地掌握线性代数的知识。 ### 回答2: MIT线性代数公开课是由麻省理工学院开设的一门线性代数课程,涵盖了从基础概念到高阶技巧的全方位学习内容。下面是对该课程的笔记总结: 该课程由吉尔伯特•斯特朗(Gilbert Strang)教授主讲,他是一位著名的数学家和教育家,为学生提供了一种简单而深入的学习方法。 该课程共分为26节课,每节课都有对应的讲义和视频,以及一些习题和作业,使学生能够更好地掌握课程内容。 课程首先介绍了向量和矩阵的基础知识,讲解了向量的加法、减法和数乘运算,以及矩阵的加法、减法和乘法运算,并且讲解了这些运算的几何意义。然后,课程进一步探讨了线性方程组的求解方法,包括高斯消元法和矩阵的逆运算。这些内容为后续课程奠定了基础。 接下来,课程介绍了行列式和特征值的概念,并讲解了如何计算行列式和求解特征值和特征向量。特征值和特征向量在矩阵的变换中起着重要的作用,因此对于理解线性代数的应用非常重要。 随后,课程进一步深入探讨了线性变换、正交性和投影等概念,以及特殊矩阵的性质,如对称矩阵和正定矩阵。这些内容使学生能够更好地理解线性代数在实际应用中的重要性。 最后,课程介绍了一些高级线性代数的内容,如奇异值分解和特殊矩阵的标准形式。这些内容对于研究生和专业领域的学生尤为重要。 总的来说,MIT线性代数公开课提供了一套完整、系统的线性代数学习资源,不仅适用于初学者,还可以帮助已经具备一定线性代数基础的学生深入学习。课程中的讲义和视频内容清晰明了,配有大量实例和习题,以及讲解中的实时演算,确保学生能够深入理解和掌握线性代数的核心概念和技巧。无论是在学术研究还是职业发展中,这门课程都具有重要的参考价值。 ### 回答3: 麻省理工学院(MIT)的线性代数公开课是一门非常出色的公开课,内容十分详细并且完整。以下是对该公开课的超详细笔记。 该公开课以线性代数为主题,通过教授线性代数的基本概念、理论和应用,帮助学生建立起对线性代数的深入理解和应用能力。 课程从基本概念讲起,首先介绍了向量和矩阵的定义、性质和操作。然后深入讲解了线性方程组的解法,包括高斯消元法和矩阵的行列式。接下来,课程探讨了向量空间和矩阵空间的性质及其应用,如子空间、基、维数等概念。进一步,课程讲解了线性变换和特征值、特征向量的概念及其重要性。 在讲解了线性代数的基本理论后,课程引入了矩阵分解和特殊矩阵的概念,如LU分解、QR分解和特征值分解等。随后,课程介绍了正交向量、正交矩阵和正交变换的概念及其在几何变换、信号处理等领域的应用。 此外,课程还涉及了线性代数在图论、最小二乘问题、数据压缩等领域的应用。通过实例和案例分析,课程帮助学生将线性代数的理论知识与实际问题相结合,提高解决实际问题的能力。 值得一提的是,该公开课还通过演示和实验的方式,让学生亲自动手进行线性代数的计算和应用,培养了学生的实践能力和创造力。 总的来说,麻省理工学院的线性代数公开课以其详细的内容和完整的知识体系,在教授线性代数知识和培养学生的应用能力方面取得了优异的成绩。无论是对于想要深入学习线性代数的学生,还是对于希望提高问题解决能力的人群,这门公开课都是非常推荐的选择。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值