斯特林公式的详细推导

0. 推导前置知识

  • 无穷级数审敛法
  • 第二重要极限
  • 定积分意义
  • w a l l i s wallis wallis(点火)公式
  • 泰勒展开

1. 证明一

该证明来自百度百科

a n = n ! n n + 1 2 e − n a_n =\frac{n!}{n^{n+\frac{1}{2}}e^{-n}} an=nn+21enn!

a n a n + 1 = 1 e ( 1 + 1 n ) n ( 1 + 1 n ) 1 2 \frac{a_n}{a_{n+1}} = \frac{1}{e}(1+\frac{1}{n})^{n}(1+\frac{1}{n})^{\frac{1}{2}} an+1an=e1(1+n1)n(1+n1)21

lim ⁡ n → ∞ a n a n + 1 > lim ⁡ n → ∞ 1 e ( 1 + 1 n ) n = 1 \lim_{n \to \infin} \frac{a_n}{a_{n+1}} \gt \lim_{n \to \infin}\frac{1}{e} (1+\frac{1}{n})^n = 1 limnan+1an>limne1(1+n1)n=1

lim ⁡ n → ∞ a n a n + 1 > 1 \lim _{n \to \infin}\frac{a_n}{a_{n+1}} \gt1 limnan+1an>1, ∃ N ∈ N + , n > N : { a n } \exist N \in N_+,n \gt N:\{a_n\} NN+n>N:{an}单调递减。

由积分放缩法我们可以得到

ln ⁡ n ! > ln ⁡ n n + 1 2 e − n = ( n + 1 2 ) ln ⁡ n − n \ln n! \gt \ln n^{n+\frac{1}{2}}e^{-n} =(n+\frac{1}{2})\ln n-n lnn!>lnnn+21en=(n+21)lnnn

为不影响证明的大体逻辑和篇幅,对该不等式放在文章后面证明。

n ! > n n + 1 2 e − n n! \gt n^{n+\frac{1}{2}}e^{-n} n!>nn+21en a n > 1 a_n \gt 1 an>1

数列 { a n } \{a_n\} {an}单调递减有下界, lim ⁡ n → ∞ a n = A \lim_{n \to \infin}a_n=A limnan=A存在。

后续证明主要思路是用 w a l l i s wallis wallis乘积公式来凑 s t i r i n g stiring stiring公式。

w a l l i s wallis wallis公式我们可以得到

lim ⁡ n → ∞ ( 2 n ! ! ) 2 ( 2 n + 1 ! ! ) ( 2 n − 1 ! ! ) = π 2 lim ⁡ n → ∞ ( 2 n ! ! ) 2 ( 2 n + 1 ) ( 2 n − 1 ! ! ) 2 = π 2 lim ⁡ n → ∞ ( 2 n ! ! ) 2 n + 1 ( 2 n − 1 ! ! ) = π 2 ( 2 n ) ! ! ( 2 n − 1 ) ! ! ∼ ( 2 n + 1 ) π 2 ( n → ∞ ) \lim_{n \to \infin}\frac{(2n!!)^2}{(2n+1!!)(2n-1!!)}=\frac{\pi}{2}\\ \lim_{n \to \infin}\frac{(2n!!)^2}{(2n+1)(2n-1!!)^2}=\frac{\pi}{2}\\ \lim_{n \to \infin}\frac{(2n!!)}{\sqrt{2n+1}(2n-1!!)}=\sqrt{\frac{\pi}{2}}\\ \frac{(2n)!!}{(2n-1)!!}\sim \sqrt{\frac{(2n+1) \pi}{2}} \quad (n \to \infin) nlim(2n+1!!)(2n1!!)(2n!!)2=2πnlim(2n+1)(2n1!!)2(2n!!)2=2πnlim2n+1 (2n1!!)(2n!!)=2π (2n1)!!(2n)!!2(2n+1)π (n)

我们容易得到

lim ⁡ n → ∞ a n = lim ⁡ n → ∞ a 2 n = lim ⁡ n → ∞ a n 2 a 2 n \lim_{n \to \infin}a_n=\lim_{n \to \infin} a_{2n}= \lim_{n\to \infin} \frac{a_n^2}{a_{2n}} nliman=nlima2n=nlima2nan2

lim ⁡ n → ∞ a n 2 a 2 n = lim ⁡ n → ∞ ( n ! ) 2 ( 2 n ) ! × ( 2 n ) 2 n + 1 2 n 2 n + 1 = lim ⁡ n → ∞ ( n ! ) 2 ( 2 n ) ! × 2 2 n + 1 2 n \lim_{n\to \infin}\frac{a_n^2}{a_{2n}}= \lim_{n \to \infin} \frac{(n!)^2}{(2n)!}\times\frac{(2n)^{2n+\frac{1}{2}}}{n^{2n+1}}=\lim_{n \to \infin} \frac{(n!)^2}{(2n)!}\times\frac{2^{2n+\frac{1}{2}}}{\sqrt{n}} nlima2nan2=nlim(2n)!(n!)2×n2n+1(2n)2n+21=nlim(2n)!(n!)2×n 22n+21
容易得到下列等式
( 2 n ) ! ! = 2 n × n ! n ! = 2 − n × ( 2 n ) ! ! ( n ! ) 2 = 2 − 2 n × [ ( 2 n ) ! ! ] 2 ( 2 n ) ! = ( 2 n ) ! ! × ( 2 n − 1 ) ! ! (2n)!!=2^n\times n!\\ n!=2^{-n}\times(2n)!!\\ (n!)^2=2^{-2n}\times[(2n)!!]^2\\ (2n)!=(2n)!! \times(2n-1)!! (2n)!!=2n×n!n!=2n×(2n)!!(n!)2=22n×[(2n)!!]2(2n)!=(2n)!!×(2n1)!!
则上式可化简为
lim ⁡ n → ∞ a n 2 a 2 n = lim ⁡ n → ∞ 2 − 2 n × [ ( 2 n ) ! ! ] 2 ( 2 n ) ! ! × ( 2 n − 1 ) ! ! × 2 2 n + 1 2 n = lim ⁡ n → ∞ ( 2 n ) ! ! ( 2 n − 1 ) ! ! × 2 n \lim_{n\to \infin}\frac{a_n^2}{a_{2n}}= \lim_{n \to \infin} \frac{2^{-2n}\times[(2n)!!]^2}{(2n)!! \times(2n-1)!!} \times\frac{2^{2n+\frac{1}{2}}}{\sqrt{n}}= \\ \lim_{n\to \infin} \frac{(2n)!!}{(2n-1)!!}\times \sqrt{\frac{2}{n}} nlima2nan2=nlim(2n)!!×(2n1)!!22n×[(2n)!!]2×n 22n+21=nlim(2n1)!!(2n)!!×n2
代入 w a l l i s wallis wallis公式得到
lim ⁡ n → ∞ a n = lim ⁡ n → ∞ a n 2 a 2 n = lim ⁡ n → ∞ ( 2 n + 1 ) π 2 × 2 n = lim ⁡ n → ∞ 2 n + 1 n × π = 2 π \lim_{n \to \infin} a_n= \lim_{n\to \infin}\frac{a_n^2}{a_{2n}}= \lim_{n \to \infin} \sqrt{\frac{(2n+1) \pi}{2}} \times\sqrt{\frac{2}{n}}=\\ \lim_{n\to \infin}\sqrt{\frac{2n+1}{n}} \times \sqrt{\pi}= \sqrt{2\pi} nliman=nlima2nan2=nlim2(2n+1)π ×n2 =nlimn2n+1 ×π =2π
代入 a n a_n an化简可得到
lim ⁡ n → ∞ n ! n n + 1 2 e − n 2 π = 1 n ! ∼ 2 π n   n n e − n ( n → ∞ ) \lim_{n \to \infin} \frac{n!}{n^{n+\frac{1}{2}}e^{-n}\sqrt{2\pi}}=1\\ n! \sim \sqrt{2\pi n}\ n^ne^{-n} \quad (n \to \infin) nlimnn+21en2π n!=1n!2πn  nnen(n)

2. 证明二

该证明来自论文
斯特灵公式可变形写为
lim ⁡ n → ∞ n ! × e n n n + 1 2 × 1 2 π = 1 \lim_{n \to \infin} \frac{n! \times e^n}{n^{n+\frac{1}{2}}} \times \frac{1}{\sqrt{2\pi}}=1 nlimnn+21n!×en×2π 1=1
a n = n ! × e n n n + 1 2 a_n=\frac{n! \times e^n}{n^{n+\frac{1}{2}}} an=nn+21n!×en


a n = a 1 × a 2 a 1 × ⋯ × a n a n − 1 ln ⁡ a n = ln ⁡ a 1 + ln ⁡ a 2 a 1 + ⋯ + ln ⁡ a n a n − 1 a_n=a_1 \times \frac{a_2}{a_1} \times \cdots \times\frac{a_n}{a_{n-1}}\\ \ln a_n= \ln a_1+\ln \frac{a_2}{a_1} + \cdots +\ln \frac{a_n}{a_{n-1}} an=a1×a1a2××an1anlnan=lna1+lna1a2++lnan1an


ln ⁡ a n a n − 1 = ln ⁡ e ( 1 + 1 n − 1 ) n − 1 2 = 1 − ( n − 1 2 ) ln ⁡ ( 1 + 1 n − 1 ) \ln \frac{a_n}{a_{n-1}}= \ln \frac{e}{(1+\frac{1}{n-1})^{n-\frac{1}{2}}}= 1-(n-\frac{1}{2})\ln(1+\frac{1}{n-1}) lnan1an=ln(1+n11)n21e=1(n21)ln(1+n11)
ln ⁡ ( 1 + 1 n − 1 ) \ln (1+ \frac{1}{n-1}) ln(1+n11)进行泰勒展开
ln ⁡ a n a n − 1 = 1 − ( n − 1 + 1 2 ) ( 1 n − 1 − 1 2 ( n − 1 ) 2 + 1 3 ( n − 1 ) 3 + o ( 1 ( n − 1 ) 3 ) ) = − 1 12 1 ( n − 1 ) 2 + o ( 1 ( n − 1 ) 2 ) \ln \frac{a_n}{a_{n-1}} = 1-(n-1+\frac{1}{2})\\(\frac{1}{n-1} -\frac{1}{2(n-1)^2}+ \frac{1}{3(n-1)^3}+o(\frac{1}{(n-1)^3}))=\\ -\frac{1}{12}\frac{1}{(n-1)^2}+o(\frac{1}{(n-1)^2}) lnan1an=1(n1+21)(n112(n1)21+3(n1)31+o((n1)31))=121(n1)21+o((n1)21)
所以
lim ⁡ n → ∞ ∣ ln ⁡ a n a n − 1 ∣ 1 ( n − 1 ) 2 = 1 12 \lim_{n \to \infin} \frac{|\ln \frac{a_n}{a_{n-1}}|}{\frac{1}{(n-1)^2}}=\frac{1}{12} nlim(n1)21lnan1an=121
级数 ∑ n = 2 ∞ ln ⁡ a n a n − 1 \sum_{n=2}^{\infin} \ln \frac{a_n}{a_{n-1}} n=2lnan1an绝对收敛,

lim ⁡ n → ∞ ln ⁡ a n \lim_{n \to \infin} \ln a_n limnlnan存在, lim ⁡ n → ∞ a n = A \lim_{n\to \infin}a_n=A limnan=A存在。

后续证明仍然是用 w a l l i s wallis wallis公式凑 s t i r i n g stiring stiring,与证明一相同,

参考证明一在此略去。

3. 积分放缩法证明: ln ⁡ n ! > ( n + 1 2 ) ln ⁡ n − n \ln n! \gt (n+\frac{1}{2}) \ln n -n lnn!>(n+21)lnnn

接下来我们用积分放缩法证明这个不等式,原证明链接在知乎

首先对于传统矩形放缩,对于单调递增的函数 f f f在区间 [ a , b ] , ( b − a ) ∈ N + [a,b],(b-a) \in N+ [a,b],(ba)N+

容易得到下面的结论

∫ a − 1 b f ( x ) d x < ∑ i = a b f ( i ) < ∫ a b + 1 f ( x ) d x \int_{a-1}^{b} f(x)dx \lt \sum_{i=a}^{b}f(i) \lt \int_{a}^{b+1}f(x)dx a1bf(x)dx<i=abf(i)<ab+1f(x)dx

与传统的矩形放缩不同,我们这里进行的是梯形放缩。

还是将区间大小分为 1 1 1, 对于区间 [ p − 1 , p ] [p-1,p] [p1,p]的单调递增凸函数 f f f

x = p x=p x=p f f f的切线。切线与 x = p − 1 , x = p , x x=p-1,x=p,x x=p1,x=p,x轴构成了梯形。

在这里插入图片描述
对于函数 f : ln ⁡ x f: \ln x f:lnx ( P , ln ⁡ P ) (P,\ln P) (P,lnP)处切线方程为

y − ln ⁡ P = 1 P ( x − P ) y-\ln P=\frac{1}{P}(x-P) ylnP=P1(xP)

进而我们可以算出该区间的梯形面积为

s = ln ⁡ P − 1 2 P s =\ln P - \frac{1}{2P} s=lnP2P1

区间 [ 1 , n ] [1,n] [1,n] n − 1 n-1 n1个梯形面积为

∑ k = 2 n ln ⁡ k − 1 2 k = ln ⁡ n ! − 1 2 ∑ k = 2 n 1 k \sum_{k=2}^{n} \ln k - \frac{1}{2k}=\ln n!-\frac{1}{2}\sum_{k=2}^{n}\frac{1}{k} k=2nlnk2k1=lnn!21k=2nk1

n − 1 n-1 n1个梯形的面积和大于 ln ⁡ x \ln x lnx [ 1 , n ] [1,n] [1,n]下方与 x x x轴围城面积

ln ⁡ n ! − 1 2 ∑ k = 2 n 1 k > ∫ 1 n ln ⁡ x d x \ln n! - \frac{1}{2}\sum_{k=2}^{n}\frac{1}{k} \gt \int_{1}^{n} \ln x dx lnn!21k=2nk1>1nlnxdx
化简得到
ln ⁡ n ! > n ln ⁡ n − n + 1 + 1 2 ∑ k = 2 n 1 k \ln n! \gt n\ln n - n + 1 + \frac{1}{2}\sum_{k=2}^{n}\frac{1}{k} lnn!>nlnnn+1+21k=2nk1
根据重要极限 lim ⁡ k → ∞ ( 1 + 1 k ) k = e \lim_{k \to \infin}(1+\frac{1}{k})^{k} =e limk(1+k1)k=e得到
1 k ≥ ln ⁡ ( 1 + 1 k ) \frac{1}{k} \ge \ln {(1+\frac{1}{k})} k1ln(1+k1)

ln ⁡ n ! > n ln ⁡ n − n + 1 + 1 2 ∑ k = 2 n ln ⁡ ( 1 + 1 k ) \ln n! \gt n\ln n - n + 1 + \frac{1}{2}\sum_{k=2}^{n}\ln (1 + \frac{1}{k}) lnn!>nlnnn+1+21k=2nln(1+k1)
再次化简得到
ln ⁡ n ! > n ln ⁡ n − n + 1 + 1 2 ∑ k = 2 n ln ⁡ ( 1 + k k ) = n ln ⁡ n − n + 1 2 ln ⁡ ( n + 1 ) + 1 − 1 2 ln ⁡ 2 \ln n! \gt n\ln n - n + 1 + \frac{1}{2}\sum_{k=2}^{n}\ln ( \frac{1+k}{k}) \\= n \ln n -n +\frac{1}{2} \ln (n+1)+1-\frac{1}{2} \ln 2 lnn!>nlnnn+1+21k=2nln(k1+k)=nlnnn+21ln(n+1)+121ln2
又有
1 2 ln ⁡ ( n + 1 ) + 1 − 1 2 ln ⁡ 2 > 1 2 ln ⁡ ( n + 1 ) + 0 > 1 2 ln ⁡ n \frac{1}{2} \ln (n+1)+1-\frac{1}{2} \ln 2 \gt \frac{1}{2} \ln (n+1)+0 \gt \frac{1}{2} \ln n 21ln(n+1)+121ln2>21ln(n+1)+0>21lnn
最终得到
ln ⁡ n ! > n ln ⁡ n − n + 1 2 ln ⁡ n = ( n + 1 2 ) ln ⁡ n − n \ln n! \gt n \ln n -n+\frac{1}{2} \ln n =(n +\frac{1}{2}) \ln n-n lnn!>nlnnn+21lnn=(n+21)lnnn

4. 符号

  • 连乘: ∏ \prod 与求和 ∑ \sum 类似,不同的是求积
    ∏ i = 1 n i = n ! = 1 × 2 ⋯ × n \prod_{i=1}^ni=n!=1\times2\cdots\times n i=1ni=n!=1×2×n
  • 双阶乘: ! ! !! !!与阶乘类似 ! ! !只是隔一个数相乘
    7 ! ! = 7 × 5 × 3 × 1 7!!=7\times5\times3\times1 7!!=7×5×3×1
    6 ! ! = 6 × 4 × 2 6!!=6\times4\times2 6!!=6×4×2

5. 参考

百里奚
百度百科
wwlvv
马凤昌

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值