笔者将mat文件用python读取数据之后,得到一个字典数组,笔者想将这个字典数组储存到json文件中,因此应该先编码json数据,因此用到了json.dumps函数进行编码,但是我使用json.dumps函数时发现有会出现问题:
TypeError: Object of type 'bytes' is not JSON serializable
后来查阅相关资料才发现,默认的编码函数很多数据类型都不能编码,因此可以自己写一个encoder去继承jsonencoder ,这样就能够进行编码了。
比如说上面的这个问题,是因为json.dumps函数发现字典里面有bytes类型的数据,因此无法编码,只要在编码函数之前写一个编码类(继承原本的JSONEncoder类),并在编码的时候使用这个类,只要检查到了是bytes类型的数据就把它转化成str类型。
class MyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, bytes):
return str(obj, encoding='utf-8');
return json.JSONEncoder.default(self, obj)
这样就解决了这个问题。
后面在编码的时候发现出现类似问题:
TypeError: Object of type 'ndarray' is not JSON serializable
这样也是一样的处理方式,当检查到了ndarray数据,把它转化成list数据就行:
class MyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.ndarray):
return obj.tolist()
elif isinstance(obj, bytes):
return str(obj, encoding='utf-8');
return json.JSONEncoder.default(self, obj)
这样就编码好了数据了。
放一下最后的代码,供大家参考一下:
import scipy.io as sio
import os
import json
import numpy as np
load_fn = '2%.mat'
load_data = sio.loadmat(load_fn)
print(load_data.keys())
class MyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.ndarray):
return obj.tolist()
elif isinstance(obj, bytes):
return str(obj, encoding='utf-8');
return json.JSONEncoder.default(self, obj)
save_fn = os.path.splitext(load_fn)[0] + '.json'
file = open(save_fn,'w',encoding='utf-8');
file.write(json.dumps(load_data,cls=MyEncoder,indent=4))
file.close()
最后再放一波参考连接,我看这个链接才明白问题所在的:点击打开链接