《程序设计与算法》之【动态规划】

44 篇文章 1 订阅

数字三角形(POJ1163)

题目描述

在上面的数字三角形中寻找一条从顶部到底边的路径,使得路径上所经过的数字之和最大。路径上的每一步都只能往左下或右下走。只需要求出这个最大和即可,不必给出具体路径。
三角形的行数大于1小于等于100,数字为 0 - 99

输入格式:
5  // 三角形行数,下面是三角形
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
要求输出最大和

数字三角形的记忆递归型动规程序

#include <iostream>
#include <algorithm>
using namespace std;
const int MAXN = 101;
int D[MAXN][MAXN];
int n;
int maxSum[MAXN][MAXN];
int MaxSum(int i, int j) {
    if (maxSum[i][j] != -1)
        return maxSum[i][j];
    if (i == n)
        return D[i][j];
    else {
        int x = MaxSum(i+1, j);
        int y = MaxSum(i+1, j+1);
        maxSum[i][j] = max(x, y)+D[i][j];
    }
    return maxSum[i][j];
}
int main() {
    int i, j;
    cin >> n;
    for (i = 1; i <=n; i++) {
        for (j = 1; j <= i; j++) {
            cin >> D[i][j];
            maxSum[i][j] = -1;
        }
    }
    cout << MaxSum(1, 1) << endl;
    return 0;
}

递归转成递推

#include <iostream>
#include <algorithm>
using namespace std;
const int MAXN = 101;
int D[MAXN][MAXN];
int n;
int maxSum[MAXN][MAXN];

int main() {
    int i, j;
    cin >> n;
    for (i = 1; i <=n; i++) {
        for (j = 1; j <= i; j++) {
            cin >> D[i][j];
        }
    }
    for (int i = 1; i <= n; i++)
        maxSum[n][i] = D[n][i];
    for (int i = n-1; i >= 1; i--) {
        for (int j = 1; j <= i; j++) {
            maxSum[i][j] = max(maxSum[i+1][j], maxSum[i+1][j+1]) + D[i][j];
        }
    }
    cout << maxSum[1][1] << endl;
    return 0;
}

动规解题的一般思路

递归到动规的一般转化方法

递归函数有n个参数,就定义一个n维的数组,数组的下标是递归函数参数的取值范围,数组元素的值是递归函数的返回值,这样就可以从边界值开始,逐步填充数组,相当于计算递归函数值的逆过程。

动规解题的一般思路

1. 将原问题分解为子问题

  • 把原问题分解为若干个子问题,子问题和原问题形式相同或类似,只不过规模变小了。子问题都解决,原问题即解决(数字三角形例)。
  • 子问题的解一旦求出就会被保存,所以每个子问题只需求解一次。

2. 确定状态

  • 在用动态规划解题时,我们往往将和子问题相关的各个变量的一组取值,称之为一个“状态”。一个“状态”对应于一个或多个子问题,所谓某个“状态”下的“值”,就是这个“状态”所对应的子问题的解。

所有“状态”的集合,构成问题的“状态空间”。“状态 空间”的大小,与用动态规划解决问题的时间复杂度直接相关。 在数字三角形的例子里,一共有N×(N+1)/2个数字,所以这个问题的状态空间里一共就有N×(N+1)/2个状态。
整个问题的时间复杂度是状态数目乘以计算每个状态所需时间。
在数字三角形里每个“状态”只需要经过一次,且在每个状态上作计算所花的时间都是和N无关的常数。
用动态规划解题,经常碰到的情况是,K个整型变量能构成一个状态(如数字三角形中的行号和列号这两个变量 构成“状态”)。如果这K个整型变量的取值范围分别是 N1, N2, ……Nk,那么,我们就可以用一个K维的数组 array[N1] [N2]……[Nk]来存储各个状态的“值”。这个 “值”未必就是一个整数或浮点数,可能是需要一个结构才能表示的,那么array就可以是一个结构数组。一个 “状态”下的“值”通常会是一个或多个子问题的解。

3. 确定一些初始状态(边界状态)的值

  • 以“数字三角形”为例,初始状态就是底边数字,值就是底边数字值。

4.确定状态转移方程

  • 定义出什么是“状态”,以及在该 “状态”下的“值”后,就要找出不同的状态之间如何迁移――即如何从一个或多个“值”已知的 “状态”,求出另一个“状态”的“值”(“人人为我”递推型)。状态的迁移可以用递推公式表示,此递推公式也可被称作“状态转移方 程”。

数字三角形的状态转移方程:

maxSum[i][j] = 
D[i][j]      // r == N
maxSum[i][j] = max(maxSum[i+1][j], maxSum[i+1][j+1]) + D[i][j];  // 其他情况

能用动规解决的问题的特点

1. 问题具有最优子结构性质
如果问题的最优解所包含的子问题的解也是最优的,我们就称该问题具有最优子结
构性质。
2. 无后效性
当前的若干个状态值一旦确定,则此后过程的演变就只和这若干个状态的值有关,和之前是采取哪种手段或经过哪条路径演变到当前的这若干个状态,没有关系。

最长上升子序列

问题描述
一个数的序列ai,当a1 < a2 < … < aS 的时候,我们称这个序列是上升的。对于给定的一个序列(a1 , a2 , …, aN ),我们可以得到一些上升的子序列(a i1 , a i2 , …, a iK ),这里1 <= i1 < i2 < … < iK <= N。比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等。这些子序列中最长的长度是4,比如子序列(1, 3, 5, 8)。
你的任务,就是对于给定的序列,求出最长上升子序列的长度。

输入数据:
输入的第一行是序列的长度N (1 <= N <= 1000)。第二行给 出序列中的N个整数,这些整数的取值范围都在0到10000。

输出要求:
最长上升子序列的长度。

输入样例:
7
1735948

输出样例:
4

解题思路

1)找子问题
“求序列的前n个元素的最长上升子序列的长度”是个子问题,但这样分解子问题,不具有“无后效性”。
假设F(n) = x,但可能有多个序列满足F(n) = x。有的序列的最后一个元素比 a n+1 小,则加上a n+1 就能形成更长上升子序列;有的序列最后一个元素不比a n+1 小……以后的事情受如何达到状态n的影响,不符合“无后效性”。
“求以a k (k=1, 2, 3…N)为终点的最长上升子序列的 长度”
一个上升子序列中最右边的那个数,称为该子序列的 “终点”。
虽然这个子问题和原问题形式上并不完全一样,但是只要这N个子问题都解决了,那么这N个子问题的解中, 最大的那个就是整个问题的解。

2)确定状态
子问题只和一个变量–数字的位置相关。因此序列中数的位置k就是“状态”,而状态 k 对应的“值”,就是以a k 做为 “终点”的最长上升子序列的长度。
状态一共有N个。

3)3. 找出状态转移方程:
maxLen (k)表示以a k 做为“终点”的最长上升子序列的长度那么:

初始状态:maxLen (1) = 1
maxLen (k) = max { maxLen (i):1<=i < ka i < a kk≠1 } + 1
    若找不到这样的i,则maxLen(k) = 1

maxLen(k)的值,就是在a k 左边,“终点”数值小于a k ,且长度最大的那个上升子序列的长度再加1。因为a k 左边任何“终点”小于a k 的子序列,加上a k 后就能形成一个更长的上升子序列。

解答

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int MAXN = 1010;
int a[MAXN];
int maxLen[MAXN];
int main() {
    int N;
    cin >> N;
    for (int i = 1; i <= N; i++) {
        cin >> a[i];
        maxLen[i] = 1;
    }
    for (int i = 2; i <= N; i++) {
        // 每次求以第i个数为重点的最长上升子序列的长度
        for (int j = 1; j < i; j++) {
            if (a[i] > a[j])
                maxLen[i] = max(maxLen[i], maxLen[j]+1);
        }
    }
    cout << *max_element(maxLen+1, maxLen+N+1) << endl;
    return 0;
}
#include <algorithm>
min_element(v.begin(), v.end());
max_element(v.begin(), v.end());  
position = max_element(a,a+n)-a;  // 这样写的话就代表的是找到的最大元素的位置在哪里,position代表位置索引

最长公共子序列(POJ1458)

问题描述
给出两个字符串,求出这样的一个最长的公共子序列的长度:子序列中的每个字符都能在两个原串中找到,而且每个字符的先后顺序和原串中的先后顺序一致。

Sample Input:
abcfbc abfcab
programming contest
abcd mnp

Sample Output:
4
2
0

解题思路
输入两个串s1,s2,设MaxLen(i, j)表示:
s1的左边i个字符形成的子串,与s2左边的j个字符形成的子串的最长公共子序列的长度(i,j从0 开始算)
MaxLen(i,j) 就是本题的“状态”
假定 len1 = strlen(s1),len2 = strlen(s2),那么题目就是要求MaxLen(len1, len2)
显然:
MaxLen(n,0) = 0 ( n= 0…len1)
MaxLen(0,n) = 0 ( n=0…len2)
递推公式:

if (s1[i-1] == s2[j-1])    // s1的最左边字符是s1[0]
    MaxLen(i, j) = MaxLen(i-1, j-1) + 1;
else
    MaxLen(i, j) = Max(MaxLen(i, j-1),MaxLen(i-1, j) );

时间复杂度O(mn) m, n是两个字串长度。

S1[i-1]!= S2[j-1]时,MaxLen(S1,S2)不会比MaxLen(S1,S2j-1)和MaxLen(S1i-1, S2)两者之中任何一个小,也不会比两者都大。

解答

#include <iostream>
#include <cstring>
using namespace std;
char sz1[1000];
char sz2[1000];
int maxLen[1000][1000];

int main() {
    while(cin >> sz1 >> sz2) {
        int length1 = strlen(sz1);
        int length2 = strlen(sz2);
        int i, j;
        for (i = 0; i <= length1; i++) {
            maxLen[i][0] = 0;
        }
        for (j = 0; j <= length2; j++) {
            maxLen[0][j] = 0;
        }
        for (i = 1; i <= length1; i++) {
            for (j = 1; j <= length2; j++) {
                if (sz1[i-1] == sz2[j-1])
                    maxLen[i][j] = maxLen[i-1][j-1] + 1;
                else
                    maxLen[i][j] = max(maxLen[i][j-1], maxLen[i-1][j]);
            }
        }
        cout << maxLen[length1][length2] << endl;
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值