判断欧拉回路是否存在方法!!
Tulipes
2020-12-01 00:58:21
8
收藏
最后发布:2020-12-01 00:58:21
首次发布:2020-12-01 00:58:21
版权声明:本文为博主原创文章,遵循
CC 4.0 BY-SA
版权协议,转载请附上原文出处链接和本声明。
本文链接:
https://blog.csdn.net/beautfullboy/article/details/110413514
版权
点赞
评论
分享
x
海报分享
扫一扫,分享海报
收藏
打赏
打赏
Tulipes
你的鼓励将是我创作的最大动力
C币
余额
2C币
4C币
6C币
10C币
20C币
50C币
确定
举报
关注
关注
一键三连
点赞Mark关注该博主, 随时了解TA的最新博文
已标记关键词
清除标记
复习一下
欧拉
回路
pi9nc的专栏
07-01
586
复习一下
欧拉
回路
我很懒的 @ 2006-02-28 16:22
判断
一个图中
是否
存在
欧拉
回路
(每条边恰好只走一次,并能回到出发点的路径),在以下三种情况中有三种不同的算法: 一、无向图 每个顶点的度数都是偶数,则
存在
欧拉
回路
。 二、有向图(所有边都是单向的) 每个节顶点的入度都等于出度,则
存在
欧拉
回路
。 以上两种情况都很好理解。其原理就是每个顶点都要能进去多少次就能出来
插入表情
添加代码片
HTML/XML
objective-c
Ruby
PHP
C
C++
JavaScript
Python
Java
CSS
SQL
其它
还能输入
1000
个字符
“速评一下”
判断
欧拉
回路
是否
存在
m0_46312382的博客
08-20
80
欧拉
回路
是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条
回路
。现给定一个图,问
是否
存在
欧拉
回路
? Input 测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是节点数N ( 1 < N < 1000 )和边数M;随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号)。当N为0时输入结 束。 Output 每个测试用例的输出占一行,若
欧拉
回路
存在
则输出1,否则输出0。 Sample Input 3 3 1 2 1 3 2
欧拉
回路
(简单
判断
是否
有
欧拉
回路
存在
)
20164225的博客
01-25
4934
https://cn.vjudge.net/contest/209173#problem/N 题目大意:给出N个点,M条边,问有没有
欧拉
回路
存在
。 题目分析:1.无向图
欧拉
回路
是否
连通2.所有点的度为偶数。并查集+degree【】 代码: #include #include #include using namespace std; const int maxn=1000+10; in
欧拉
回路
(模板题,
判断
是否
存在
欧拉
回路
)
sdau20163940的博客
01-25
1284
N -
欧拉
回路
思路:使用并查集+degree处理,用并查集寻找每个连通分量的根节点,degree用来记录每个节点的度,注意无向图
欧拉
回路
存在
的条件是度全为偶数!! 代码: #include #include #include #include #include #include #include #include #define ll lon
怎么
判断
是不是
欧拉
回路
_
欧拉
回路
基本概念+
判断
+求解
weixin_39673002的博客
12-22
22
1.定义如果图G(有向图或者无向图)中所有边一次仅且一次行遍所有顶点的通路称作
欧拉
通路。如果图G中所有边一次仅且一次行遍所有顶点的
回路
称作
欧拉
回路
。具有
欧拉
回路
的图称为
欧拉
图(简称E图)。具有
欧拉
通路但不具有
欧拉
回路
的图称为半
欧拉
图。2. 定理及推论
欧拉
通路和
欧拉
回路
的判定是很简单的,请看下面的定理及推论。无向图G
存在
欧拉
通路的充要条件是:G为连通图,并且G仅有两个奇度结点(度数为奇数的顶点)或者...
Hdu 1878
欧拉
回路
[
判断
是否
存在
欧拉
回路
]
10-10
1813
题目链接
欧拉
回路
的
判断
herongwei 的 BLOG
08-05
748
最近多校碰到几道和
欧拉
回路
相关的题目,这里做个总结 代码:dfs 递归实现:如果是
欧拉
回路
,则输出“1”,否则输出“0”。 #include using namespace std; const int N=1005; int G[N][N];///邻接矩阵存储图 int vis[N];///遍历时标记该点
是否
被访问过 int deg[N];///存储节点的度 void dfs(int
POJ 1300
判断
是否
存在
欧拉
回路
(包含定理)
liwei的专栏
01-27
2058
题目描述: 你是一座大庄园的管家。庄园有很多房间,编号为0、1、2、3,...。你的主人是一个心不在 焉的人,经常沿着走廊随意地把房间的门打开。多年来,你掌握了一个诀窍:沿着一个通道,穿 过这些大房间,并把房门关上。你的问题是能否找到一条路径经过所有开着门的房间,并使得: 1) 通过门后立即把门关上; 2) 关上了的门不再打开; 3) 最后回到你自己的房间(房间0),并且所有的门都已经
判断
欧拉
路径和
欧拉
回路
tosim的博客
09-26
1674
判断
欧拉
路径和
欧拉
回路
无向图连通
欧拉
路径:度数为奇数的点有0个或2个
欧拉
回路
:度数为奇数的点有0个有向图连通
欧拉
路径:有两个点入度不等于出度,其他点入度等于出度,且一个点入度-出度=1,另一个点出度-入度=1,出度大的为起点;或者所有点入度等于出度
欧拉
回路
:所有点入度等于出度
判断
连通并查集 dfs
UVa10129
判断
有向图中
是否
存在
欧拉
回路
她山之石,决不自弃
07-24
678
#include #include #include #include #include #include #include #include #include #include #include #include #define ll long long using namespace std; /*************************************************
HDU NO.1878
欧拉
回路
(邻接矩阵,
判断
欧拉
回路
的条件)
quper1g的博客
04-21
2106
题意:(中文略) 思路:
存在
欧拉
回路
的条件:所有顶点的度为偶数,并且图是联通的(每个点都可以遍历) 代码: #include #include #include #include #include #include #include #include #include #include #include using namespace std; #define X first #de
HDU 1878
欧拉
回路
(
判断
欧拉
回路
)
MingShen
09-01
999
题意:略 解题思路:
判断
是否
连通, 有没有度为奇数的点。并查集, DFS都可以, 用链式向前星建图会超时, 不知道为什么, 邻接矩阵反而不超时。
欧拉
回路
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 10725 Ac
怎么
判断
是不是
欧拉
回路
_无向图的
欧拉
回路
和
欧拉
路径
判断
weixin_39688035的博客
12-22
20
#include #include using namespace std;const int MAX_N = 100;const int MAX_M = 10000;struct edge {int v, next;int len;} E[MAX_M];int p[MAX_N], eid;void init() {memset(p, -1, sizeof(p));eid = 0;}void in...
HDU1878--
判断
无向图
是否
存在
欧拉
回路
weixin_44756457的博客
08-28
265
欧拉
回路
:如果图G中的一个路径包括每个边恰好一次,则该路径称为
欧拉
路径,如果一个
回路
是
欧拉
路径,则称为
欧拉
回路
。 无向图
存在
欧拉
回路
的条件: 1.
判断
图是联通的; 2.所有点的度数都是偶数; 代码如下: #include<cstdio> #include<cstring> #include<algorithm> #include<vector> us...
怎么
判断
是不是
欧拉
回路
_HDU --- 1878
判断
图
是否
为
欧拉
回路
weixin_39640904的博客
12-22
8
题意:这道题讲的是
判断
所给图中
是否
存在
一个
欧拉
回路
。知识普及:
欧拉
通路: 通过图中每条边且只通过一次,并且经过每一顶点的通路。
欧拉
回路
: 通过图中每条边且只通过一次,并且经过每一顶点的
回路
。无向图
是否
具有
欧拉
通路或
回路
的判定:
欧拉
通路:图连通;图中只有0个或2个度为奇数的节点
欧拉
回路
:图连通;图中所有节点度均为偶数有向图
是否
具有
欧拉
通路或
回路
的判定:
欧拉
通路:图连通;除2个端点外其余节点入度=出度...
无向图
判断
是否
存在
欧拉
通路和
欧拉
回路
lanshan1111的博客
10-30
560
利用并查集 #include<bits/stdc++.h> #define PI 3.1415926 using namespace std; const int maxn = 1003; int P,Q; ///P为顶点数,Q为边数 int degree[maxn]; ///存放每个节点的度数 int father[maxn]; ///进行并查集操作的数组 void ...
杭电1878
欧拉
回路
(
欧拉
回路
的
判断
)
mengxiang000000
12-17
3176
欧拉
回路
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 11399 Accepted Submission(s): 4165 Problem Description
欧拉
回路
是指不令笔离开纸面,可画过图中每
C/C++程序员实战基础
08-20
JDK1.8 API 百度翻译版中文 java帮助文档1.8
11-02
JDK1.8 API 中文 百度翻译版 java帮助文档 JDK API java 帮助文档 百度翻译 JDK1.8 API 中文 百度翻译版 java帮助文档 Java最新帮助文档 本帮助文档是使用
eNSP中玩转Python自动化——通过FTP备份交换机配置文件
weixin_44309905的博客
01-24
9599
Python自动化一、安装Paramiko模块二、搭建实验环境1、桥接电脑网卡2、配置交换机交换机基础配置测试交换机与电脑的连通性交换机配置FTP验证FTP查看交换机配置文件三、Python脚本1、执行脚本2、备份成功 一、安装Paramiko模块 首先安装Python3 然后安装pip解释器 最后安装Paramiko模块 Windows+R打开Cmd,输入命令: pip3 install paramiko 进入python,导入 paramiko模块: import paramiko 二、搭建
©️2020 CSDN
皮肤主题: 游动-白
设计师:上身试试
返回首页