昇思25天学习打卡营第10天|ShuffleNet图像分类

ShuffleNet网络结构

ShuffleNet是一种专为移动设备设计的、计算效率极高的卷积神经网络(CNN)架构。其网络结构的设计主要围绕减少计算复杂度和提高模型效率展开,通过引入逐点分组卷积(Pointwise Group Convolution)和通道洗牌(Channel Shuffle)两种新技术,实现了在保持精度的同时大幅降低计算成本。

逐点分组卷积(Pointwise Group Convolution):

逐点分组卷积是ShuffleNet中用于减少1x1卷积计算复杂度的方法。它将输入特征图的通道分成多个组,每个组内的通道独立进行1x1卷积,从而显著降低了计算量。
在这里插入图片描述

然而,这种方法可能导致通道间的信息无法充分交流,影响模型的表达能力。可能会降低网络的特征提取能力

通道洗牌(Channel Shuffle):

为了解决逐点分组卷积带来的通道间信息交流不足的问题,ShuffleNet引入了通道洗牌操作。通过均匀地打乱不同分组中的通道,使得每个分组都能获得来自其他分组的信息,从而增强模型的特征提取能力。

在这里插入图片描述
在这里插入图片描述

ShuffleNet对ResNet中的Bottleneck结构进行由(a)到(b), ©的更改:

  1. 将开始和最后的 1×1卷积模块(降维、升维)改成Point Wise Group Convolution

  2. 为了进行不同通道的信息交流,再降维之后进行Channel Shuffle

  3. 降采样模块中, 3×3 Depth Wise Convolution的步长设置为2,长宽降为原来的一般,因此shortcut中采用步长为23×3平均池化,并把相加改成拼接。
    在这里插入图片描述
    ShuffleV1Block

class ShuffleV1Block(nn.Cell):
    def __init__(self, inp, oup, group, first_group, mid_channels, ksize, stride):
        super(ShuffleV1Block, self).__init__()
        self.stride = stride
        pad = ksize // 2
        self.group = group
        if stride == 2:
            outputs = oup - inp
        else:
            outputs = oup
        self.relu = nn.ReLU()
        branch_main_1 = [
            GroupConv(in_channels=inp, out_channels=mid_channels,
                      kernel_size=1, stride=1, pad_mode="pad", pad=0,
                      groups=1 if first_group else group),
            nn.BatchNorm2d(mid_channels),
            nn.ReLU(),
        ]
        branch_main_2 = [
            nn.Conv2d(mid_channels, mid_channels, kernel_size=ksize, stride=stride,
                      pad_mode='pad', padding=pad, group=mid_channels,
                      weight_init='xavier_uniform', has_bias=False),
            nn.BatchNorm2d(mid_channels),
            GroupConv(in_channels=mid_channels, out_channels=outputs,
                      kernel_size=1, stride=1, pad_mode="pad", pad=0,
                      groups=group),
            nn.BatchNorm2d(outputs),
        ]
        self.branch_main_1 = nn.SequentialCell(branch_main_1)
        self.branch_main_2 = nn.SequentialCell(branch_main_2)
        if stride == 2:
            self.branch_proj = nn.AvgPool2d(kernel_size=3, stride=2, pad_mode='same')

    def construct(self, old_x):
        left = old_x
        right = old_x
        out = old_x
        right = self.branch_main_1(right)
        if self.group > 1:
            right = self.channel_shuffle(right)
        right = self.branch_main_2(right)
        if self.stride == 1:
            out = self.relu(left + right)
        elif self.stride == 2:
            left = self.branch_proj(left)
            out = ops.cat((left, right), 1)
            out = self.relu(out)
        return out

    def channel_shuffle(self, x):
        batchsize, num_channels, height, width = ops.shape(x)
        group_channels = num_channels // self.group
        x = ops.reshape(x, (batchsize, group_channels, self.group, height, width))
        x = ops.transpose(x, (0, 2, 1, 3, 4))
        x = ops.reshape(x, (batchsize, num_channels, height, width))
        return x

ShuffleNet的基本单元是在残差单元(residual block)的基础上改进而成的,具体结构如下:

1x1分组卷积:首先,输入特征图通过一个1x1的分组卷积进行降维,减少通道数。
通道洗牌:紧接着,对分组卷积的输出进行通道洗牌操作,以实现不同分组之间的信息交流。
3x3深度可分离卷积:然后,使用3x3的深度可分离卷积(depthwise separable convolution)进行特征提取。这里的3x3卷积是瓶颈层(bottleneck),用于降低计算量。
1x1分组卷积(可选):最后,根据需要,可以通过另一个1x1的分组卷积将通道数恢复到与输入相同或更大的数量。
短路连接:在基本单元中,还包含短路连接(shortcut),用于将输入特征图直接加到输出特征图上,以保留原始信息并帮助梯度回传。
在这里插入图片描述

ShuffleNet网络结构如上图所示,以输入图像 224×224 ,组数3(g = 3)为例,首先通过数量24,卷积核大小为 3×3stride2的卷积层,输出特征图大小为 112×112 ,channel为24;然后通过stride为2的最大池化层,输出特征图大小为 56×56channel数不变;再堆叠3个ShuffleNet模块(Stage2, Stage3, Stage4),三个模块分别重复4次、8次、4次,其中每个模块开始先经过一次下采样模块(上图©),使特征图长宽减半,channel翻倍(Stage2的下采样模块除外,将channel数从24变为240);随后经过全局平均池化,输出大小为 1×1×960 ,再经过全连接层softmax,得到分类概率

ShuffleNetV1

class ShuffleNetV1(nn.Cell):
    def __init__(self, n_class=1000, model_size='2.0x', group=3):
        super(ShuffleNetV1, self).__init__()
        print('model size is ', model_size)
        self.stage_repeats = [4, 8, 4]
        self.model_size = model_size
        if group == 3:
            if model_size == '0.5x':
                self.stage_out_channels = [-1, 12, 120, 240, 480]
            elif model_size == '1.0x':
                self.stage_out_channels = [-1, 24, 240, 480, 960]
            elif model_size == '1.5x':
                self.stage_out_channels = [-1, 24, 360, 720, 1440]
            elif model_size == '2.0x':
                self.stage_out_channels = [-1, 48, 480, 960, 1920]
            else:
                raise NotImplementedError
        elif group == 8:
            if model_size == '0.5x':
                self.stage_out_channels = [-1, 16, 192, 384, 768]
            elif model_size == '1.0x':
                self.stage_out_channels = [-1, 24, 384, 768, 1536]
            elif model_size == '1.5x':
                self.stage_out_channels = [-1, 24, 576, 1152, 2304]
            elif model_size == '2.0x':
                self.stage_out_channels = [-1, 48, 768, 1536, 3072]
            else:
                raise NotImplementedError
        input_channel = self.stage_out_channels[1]
        self.first_conv = nn.SequentialCell(
            nn.Conv2d(3, input_channel, 3, 2, 'pad', 1, weight_init='xavier_uniform', has_bias=False),
            nn.BatchNorm2d(input_channel),
            nn.ReLU(),
        )
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='same')
        features = []
        for idxstage in range(len(self.stage_repeats)):
            numrepeat = self.stage_repeats[idxstage]
            output_channel = self.stage_out_channels[idxstage + 2]
            for i in range(numrepeat):
                stride = 2 if i == 0 else 1
                first_group = idxstage == 0 and i == 0
                features.append(ShuffleV1Block(input_channel, output_channel,
                                               group=group, first_group=first_group,
                                               mid_channels=output_channel // 4, ksize=3, stride=stride))
                input_channel = output_channel
        self.features = nn.SequentialCell(features)
        self.globalpool = nn.AvgPool2d(7)
        self.classifier = nn.Dense(self.stage_out_channels[-1], n_class)

    def construct(self, x):
        x = self.first_conv(x)
        x = self.maxpool(x)
        x = self.features(x)
        x = self.globalpool(x)
        x = ops.reshape(x, (-1, self.stage_out_channels[-1]))
        x = self.classifier(x)
        return x

设置model_size="2.0x",定义模型的复杂度。

 net = ShuffleNetV1(model_size="2.0x", n_class=10)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

柏常青

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值