自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(90)
  • 问答 (1)
  • 收藏
  • 关注

原创 昇思25天学习打卡营第25天 | Pix2Pix实现图像转换

本文通过使用MindSpore实现了Pix2Pix模型,包括数据准备、生成器和判别器的搭建、训练和验证。Pix2Pix是一种条件生成对抗网络(cGAN),可用于图像到图像的转换任务。训练过程中,我们结合cGAN损失和L1损失优化生成器,生成逼真的图像。通过准备数据集、定义模型结构、设置损失函数和优化器,逐步进行训练。在训练完成后,利用验证集评估生成器的效果,并展示生成的图像结果。Pix2Pix模型在多种图像转换任务中表现出色,如从卫星图像生成地图、灰度图像上色等。

2024-07-31 20:37:02 447 1

原创 昇思25天学习打卡营第24天 | DCGAN生成漫画头像

本文介绍了如何使用深度卷积生成对抗网络(DCGAN)来生成动漫头像。DCGAN是生成对抗网络(GAN)的扩展版本,主要通过卷积层和转置卷积层在判别器和生成器中进行处理。

2024-07-19 01:09:31 229 1

原创 昇思25天学习打卡营第23天 | CycleGAN图像风格迁移互换

CycleGAN是一种强大的图像风格迁移工具,通过其独特的无监督学习方法,解决了传统方法中的很多问题,为图像处理和生成开辟了新的路径。通过本案例的学习,可以深入理解CycleGAN的工作原理和实现细节,同时也能体会到深度学习在计算机视觉领域的巨大潜力和广阔前景。

2024-07-19 00:25:07 473

原创 昇思25天学习打卡营第22天 | 基于MobileNetv2的垃圾分类函数式自动微分

本文档详细介绍了使用MobileNetV2模型进行垃圾分类的全过程,包括数据准备、模型搭建、模型训练、评估和推理等步骤。MobileNetV2是一种轻量级卷积神经网络,专为移动端和嵌入式设备设计,具有高效、低耗的特点。通过将该模型应用于垃圾分类任务,我们可以自动识别和分类不同类型的垃圾,提高垃圾处理的效率。

2024-07-16 00:06:12 637

原创 昇思25天学习打卡营第21天 | 基于MindSpore的红酒分类实验

本次实验不仅让我掌握了KNN算法的实现过程,还了解了MindSpore框架在机器学习任务中的应用。通过实验操作,进一步巩固了机器学习理论知识,提升了编程实战能力。同时,也深刻认识到在处理实际问题时,数据预处理和特征工程的重要性。

2024-07-15 23:46:07 881

原创 昇思25天学习打卡营第20天 | 基于MindNLP+MusicGen生成自己的个性化音乐

本实验展示了如何使用MindSpore和MusicGen模型生成个性化音乐。MusicGen基于Transformer结构,通过文本编码、音频token预测和音频解码三个阶段实现音乐生成。实验涵盖了环境配置、模型下载、无提示生成、文本提示生成和音频提示生成等步骤,通过不同的生成模式展示了MusicGen的多样性和灵活性。通过实验,我们能够体验到高效的音乐生成过程,并掌握调整生成参数的方法,以生成符合需求的音乐作品。

2024-07-13 23:34:08 394

原创 昇思25天学习打卡营第19天 | 基于MindSpore通过GPT实现情感分类

通过本实验,您将掌握如何基于MindSpore和GPT模型进行中文情感分类。这个过程包括数据预处理、模型构建、训练和评估,以及对新样本的推理。通过实践这些步骤,您可以应用类似的方法进行其他自然语言处理任务。

2024-07-12 16:59:34 538

原创 昇思25天学习打卡营第18天 | 基于MindSpore的GPT2文本摘要

本文介绍了如何使用MindSpore框架和MindNLP工具包实现基于GPT-2的文本摘要任务。通过加载和处理NLPCC2017数据集,我们使用BertTokenizer进行中文文本的分词和处理,并构建了一个GPT-2模型用于生成摘要。在模型训练中,我们采用动态学习率调度策略,并记录了模型训练过程。最后,展示了模型的推理过程,生成文本摘要并将其解码为中文文本。本文详细介绍了每一步的实现代码,并附有注释以帮助理解。

2024-07-12 15:33:18 334

原创 昇思25天学习打卡营第17天 | 基于 MindSpore 实现 BERT 对话情绪识别

通过 BertForSequenceClassification 构建用于情感分类的 BERT 模型,加载预训练权重,设置情感三分类的超参数自动构建模型。后面对模型采用自动混合精度操作,提高训练的速度,然后实例化优化器,紧接着实例化评价指标,设置模型训练的权重保存策略,最后就是构建训练器,模型开始训练。

2024-07-09 18:30:53 1711

原创 昇思25天学习打卡营第16天 | 文本解码原理-以MindNLP为例

通过本文的介绍,我们了解了文本解码的基本原理,并结合MindNLP框架,详细讲解了如何实现一个简单的贪心解码器。希望这篇文章能帮助大家更好地理解文本生成任务中的解码过程。如果有任何问题或建议,欢迎在评论区留言讨论。

2024-07-09 00:11:49 944

原创 昇思25天学习打卡营第15天 | Vision Transformer图像分类

通过学习Vision Transformer(ViT),我认识到该模型如何将Transformer架构应用于图像分类领域,并实现了在无卷积操作的情况下依然能取得优异的性能。ViT将输入图像划分为固定大小的patch,并将其视为序列输入到Transformer中。通过多头自注意力机制,模型能够有效地捕捉图像中的全局特征。在实践中,我了解了如何使用MindSpore框架进行数据处理、模型训练和推理,包括数据增强、定义损失函数、优化器、以及模型的评估与可视化。

2024-07-08 11:34:43 782

原创 昇思25天学习打卡营第14天 | SSD目标检测

在学习SSD目标检测算法的过程中,我了解到SSD是一种单阶段目标检测算法,通过VGG16作为基础网络进行特征提取,利用多尺度特征图进行检测,具有检测速度快和精度高的特点。SSD采用预设anchor策略,通过3×3卷积直接输出检测结果,避免了YOLO的全连接层计算。通过学习数据处理、数据增强以及SSD网络结构的构建,我加深了对目标检测算法的理解,并掌握了MindSpore框架下数据集创建和模型训练的基本流程。这次学习提升了我在计算机视觉领域的实践技能。

2024-07-08 11:03:57 953

原创 昇思25天学习打卡营第13天 | ShuffleNet图像分类

通过本次学习,我不仅掌握了ShuffleNetV1的网络结构和实现方法,还深入理解了分组卷积和通道重排在提高模型效率中的作用。未来,我希望能够进一步探索ShuffleNetV2以及其他高效模型的设计与应用,并尝试将其应用于更多复杂的数据集和任务中。同时,我还计划研究模型压缩和加速的其他技术,如模型剪枝和量化,以进一步提升模型的应用性能。

2024-07-08 01:17:13 1145

原创 昇思25天学习打卡营第12天 | ResNet50图像分类

通过本次学习,我不仅掌握了ResNet50网络的构建和训练方法,还深刻理解了残差网络在深度学习中的重要性。未来的工作中,我希望能进一步探索更深层次的网络结构,并应用于更复杂的数据集和任务中。

2024-07-04 23:39:47 1062

原创 昇思25天学习打卡营第11天 | ResNet50迁移学习

在实际应用场景中,由于训练数据集不足,所以很少有人会从头开始训练整个网络。普遍的做法是,在一个非常大的基础数据集上训练得到一个预训练模型,然后使用该模型来初始化网络的权重参数或作为固定特征提取器应用于特定的任务中。本章将使用迁移学习的方法对ImageNet数据集中的狼和狗图像进行分类。

2024-07-03 23:09:59 590

原创 昇思25天学习打卡营第10天 |FCN图像语义分割

FCN的核心贡献在于提出使用全卷积层,通过学习让图片实现端到端分割。与传统使用CNN进行图像分割的方法相比,FCN有两大明显的优点:一是可以接受任意大小的输入图像,无需要求所有的训练图像和测试图像具有固定的尺寸。二是更加高效,避免了由于使用像素块而带来的重复存储和计算卷积的问题。

2024-07-03 21:15:00 1014

原创 昇思25天学习打卡营第9天 | 使用静态图加速

使用MindSpore的静态图模式进行加速,意味着开发者可以获得高性能的模型执行能力,同时框架本身也在不断进化以提供更好的易用性和灵活性,适合那些追求极致性能和大规模模型训练的场景。

2024-07-02 21:10:39 855

原创 昇思25天学习打卡营第8天 | 保存与加载

在现代深度学习项目中,模型的训练、保存、加载和部署是至关重要的环节。本章介绍了如何使用MindSpore框架进行模型的保存与加载,包括模型权重的保存与加载以及使用MindIR进行模型的中间表示存储和加载。通过详细的代码示例和步骤解析,我们学习了如何利用MindSpore的save_checkpoint和load_checkpoint接口保存和加载模型权重,从而确保训练成果的持久化和后续调优的灵活性。同时,我们还学习了如何使用export接口将模型保存为MindIR格式,并通过load接口加载MindIR模型

2024-07-01 22:57:33 411

原创 昇思25天学习打卡营第7天 |模型训练

通过本次学习和实践,我不仅掌握了MindSpore的基本使用方法,还深入理解了深度学习模型的训练和评估过程。反向传播算法、数据预处理、神经网络构建、超参数调优等方面的知识,使我在实际项目中能够更加得心应手地应用这些技术。同时,这些实践经验也为我后续深入学习和研究深度学习奠定了坚实的基础。

2024-06-30 20:52:41 681

原创 昇思25天学习打卡营第6天 | 函数式自动微分

本次学习让我对反向传播算法和MindSpore的自动微分功能有了全面而深入的理解。通过实践操作,我不仅掌握了基础理论,还学会了如何在实际中应用这些工具。自动微分大大简化了梯度计算的过程,使我们能够专注于模型的设计和优化。这些知识和技能为我今后的深度学习研究和应用打下了坚实的基础。

2024-06-30 16:36:36 731

原创 昇思25天学习打卡营第5天 | 网络构建

通过本次学习,我掌握了如何使用MindSpore构建和训练神经网络模型。了解了MindSpore中Cell类的基本原理,以及如何通过继承和重载方法来实现自定义的神经网络层。通过实例化和组合不同的子Cell,构建了一个用于MNIST数据集分类的多层感知器模型,并通过Flatten、Dense、ReLU等层进行操作。熟悉了SequentialCell的使用,简化了模型的构建过程,同时通过Softmax层实现了分类概率的计算。整体学习过程提高了我对MindSpore深度学习框架的理解和应用能力。

2024-06-28 21:59:07 678

原创 昇思25天学习打卡营第4天 | 数据变换Transforms

通常情况下,直接加载的原始数据并不能直接送入神经网络进行训练,此时我们需要对其进行数据预处理。MindSpore提供不同种类的数据变换(Transforms),配合数据处理Pipeline来实现数据预处理。所有的Transforms均可通过map方法传入,实现对指定数据列的处理。

2024-06-26 21:07:56 918

原创 昇思25天学习打卡营第3天 | 数据集 Dataset

数据是深度学习的基础,高质量的数据输入将在整个深度神经网络中起到积极作用。MindSpore提供基于Pipeline的数据引擎,通过数据集(Dataset)和数据变换(Transforms)实现高效的数据预处理。其中Dataset是Pipeline的起始,用于加载原始数据。mindspore.dataset提供了内置的文本、图像、音频等数据集加载接口,并提供了自定义数据集加载接口。

2024-06-26 11:23:20 1035

原创 昇思25天学习打卡营第2天 | 张量Tensor

通过学习MindSpore中的张量和稀疏张量,可以深入了解了如何有效地管理和操作大规模数据,以及如何利用稀疏数据结构来提升计算效率和节省存储空间。

2024-06-25 22:14:25 998

原创 昇思25天学习打卡营第1天|快速入门

本章通过MindSpore的API来快速实现一个简单的深度学习模型。若想要深入了解MindSpore的快速使用方法。

2024-06-25 20:27:35 799

原创 Python自动化办公(二) —— 查看文件夹中的PDF文件数量

在日常办公中,我们经常需要统计某个文件夹中的PDF文件数量。手动操作不仅费时费力,而且容易出错。幸运的是,使用Python可以轻松实现这个过程。本文将介绍如何使用Python脚本统计一个文件夹中PDF文件的数量并返回结果。

2024-06-15 15:36:33 536

原创 Python自动化办公(一) —— 根据PDF文件批量创建Word文档

在现代办公环境中,自动化是提升工作效率和减少重复劳动的重要手段。本文介绍了一种使用Python实现自动化办公的方法,即根据PDF文件批量创建对应的Word空白文档。通过详细的代码示例和解释,读者可以学会如何利用Python脚本遍历文件夹中的PDF文件,并根据每个PDF文件的名称生成对应的Word文档。这不仅简化了繁琐的手动操作,还确保了工作的准确性和高效性。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有用的指导,帮助你在日常办公中应用Python自动化技术。

2024-06-15 15:34:22 745

原创 C# WPF入门学习主线篇(三十四)—— 图形和动画

在WPF中,图形和动画能够大幅提升应用程序的用户体验。本篇文章详细介绍了WPF中图形的绘制方法、动画的创建与应用以及多媒体控件的使用。通过掌握这些技术,你可以创建更加丰富和生动的WPF应用程序,实现复杂的动态效果和多媒体集成。

2024-06-13 17:27:22 1178

原创 C# WPF入门学习主线篇(三十三)—— 使用ICommand实现命令绑定

通过本文,我们详细介绍了如何在WPF应用程序中使用`ICommand`实现命令绑定,并通过一个具体的示例演示了如何实现命令绑定。使用命令绑定可以将用户交互与ViewModel中的命令连接起来,从而实现UI逻辑与业务逻辑的分离,提高代码的可维护性和可测试性。希望本文能帮助你更好地理解和应用`ICommand`接口,提高WPF开发的水平。

2024-06-13 15:58:05 3192 2

原创 C# WPF入门学习主线篇(三十二)—— 创建Model、View和ViewModel

通过本文,我们详细介绍了如何在WPF中创建Model、View和ViewModel,并通过一个具体示例演示了它们的交互和实现。MVVM模式通过将UI和业务逻辑分离,提高了代码的可维护性和可测试性,是WPF开发中的一种重要架构模式。希望本文能帮助你更好地理解和应用MVVM模式,提高WPF开发的水平。

2024-06-13 14:58:12 1547

原创 C# WPF入门学习主线篇(三十一)—— MVVM模式简介

MVVM模式是WPF开发中的一种重要架构模式,通过将用户界面(View)与业务逻辑和数据(Model)分离,提高了代码的可维护性和可测试性。本文介绍了MVVM模式的基本概念、组件及其交互方式,并通过一个简单的示例演示了如何在WPF应用程序中实现MVVM模式。

2024-06-13 14:50:45 1513

原创 C# WPF入门学习主线篇(三十)—— MVVM(Model-View-ViewModel)模式

在本篇文章中,我们介绍了MVVM模式的基本概念,并通过一个简单的示例演示了如何在WPF应用程序中实现MVVM模式。我们详细讲解了Model、View和ViewModel的定义和实现,以及如何通过数据绑定和命令绑定实现UI和业务逻辑的分离。

2024-06-13 14:44:48 3367

原创 C# WPF入门学习主线篇(二十九)—— 绑定到对象和集合

在本篇文章中,我们详细介绍了如何在WPF中将控件绑定到对象和集合。通过定义和初始化数据对象和集合,使用数据绑定将数据源与UI控件连接起来,并实现动态更新,我们可以轻松地创建一个响应式的用户界面。

2024-06-13 14:38:22 1297

原创 C# WPF入门学习主线篇(二十八)—— 使用集合(ObservableCollection)

在本篇文章中,我们详细介绍了`ObservableCollection`在WPF中的使用。通过定义和初始化`ObservableCollection`,将其绑定到UI控件,以及动态更新集合数据,我们可以创建一个响应式的用户界面。在实际开发中,`ObservableCollection`是非常有用的工具,可以帮助我们简化数据绑定的实现,提高应用程序的交互性和响应性。

2024-06-13 14:30:48 1241

原创 C# WPF入门学习主线篇(二十七)—— 数据源

在本篇文章中,我们介绍了WPF中的数据源概念,包括如何使用ObservableCollection以及绑定到单个对象和集合类型。理解和使用这些数据源可以帮助你创建更动态和交互性更强的WPF应用程序。在后续的文章中,我们将深入探讨数据绑定的高级技术和实践。

2024-06-13 14:26:42 939

原创 C# WPF入门学习主线篇(二十六)—— 绑定路径和数据上下文

通过理解和应用绑定路径和数据上下文,可以更灵活地在WPF中进行数据绑定,从而实现数据和UI的自动同步。希望通过这篇博客的介绍,你对绑定路径和数据上下文有了更深入的了解,并能够在实际开发中应用这些概念来构建更加高效和灵活的WPF应用程序。

2024-06-13 14:12:38 1517 2

原创 C# WPF入门学习主线篇(二十五)—— 单向绑定、双向绑定

单向绑定和双向绑定是WPF中强大的数据绑定机制,简化了数据与UI控件之间的同步。单向绑定适用于只读数据,而双向绑定则适用于可编辑的数据。通过理解和应用这些绑定模式,可以有效地提升WPF应用程序的开发效率和用户体验。

2024-06-13 13:54:08 2066

原创 C# WPF入门学习主线篇(二十四)—— 数据绑定基础

在本篇博客中,我们详细介绍了WPF中的数据绑定基础知识。通过具体的代码示例,展示了单向绑定和双向绑定的使用方法,以及如何使用绑定路径和数据上下文来实现更灵活的绑定。希望通过这篇博客,读者能够深入理解和掌握WPF数据绑定的基本概念和应用技巧。

2024-06-13 13:50:52 2701

原创 C# WPF入门学习主线篇(二十三)—— 控件模板(ControlTemplate)和数据模板(DataTemplate)

在本篇博客中,我们详细介绍了WPF中的控件模板(ControlTemplate)和数据模板(DataTemplate)的定义和应用。通过具体的代码示例,展示了如何自定义按钮的外观以及如何展示列表中的数据项。这些模板的使用不仅提升了应用程序的视觉效果,还增强了其灵活性和可维护性。希望通过这篇博客,读者能够深入理解和掌握WPF中模板的使用技巧。

2024-06-13 13:37:57 1558

原创 C# WPF入门学习番外篇(二) —— C# WPF使用数据库创建注册登录界面

本篇博客详细介绍了如何在C# WPF应用程序中使用MySQL数据库实现用户注册和登录功能。通过安装必要的库,配置连接字符串,设计WPF界面,并编写后台代码,你将学会如何与数据库进行交互,完成基本的用户认证功能。该教程适合初学者以及希望在WPF应用中集成数据库功能的开发者。

2024-06-13 10:00:53 2475

HarmonyOS 鸿蒙应用开发 例1-任务进度管理程序

任务进度轻松掌控:ArkUI框架实战详解任务管理应用开发 内容简介:想要高效管理任务,追踪进度?不妨借助ArkUI框架打造一个任务管理应用!本文将深入解析如何使用ArkUI的声明式UI设计,在应用中新增任务、完成任务,实时统计任务进度,一目了然。 通过实例演示,你将学会: 1. 如何创建任务类、自定义卡片样式、使用进度条展示任务进度。 2. 实现任务的删除功能。跟随本代码,轻松掌握ArkUI框架的强大之处,为任务管理提供高效而优雅的解决方案。 阅读建议:建议首先掌握 TypeScript 语言的基础知识,因为ArkUI框架是使用TypeScript编写的。了解类和对象的概念,以及如何定义和使用它们对于理解框架中的数据结构非常重要。对于ArkUI框架本身,你需要学习框架提供的装饰器、组件、状态管理等核心概念。理解@State、@Styles、@Extend、@Builder等装饰器的作用和使用方法,学会如何定义和使用组件,以及如何管理组件内的状态。实践是巩固所学知识的最佳途径。通过阅读文档、查阅示例代码、亲自动手编写小型应用,你将更加深入地理解ArkUI框架的运作机制。逐步积累经验。

2024-01-27

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除