pytorch
赵 XiaoQin
Never Say Never
展开
-
ResNet模型代码整理
1. ResNet模型2. 左图为18层,34层模型的一个残差块,右图为50层,101层,152层的残差块3. 18层,34层的残差块(虚线部分表示输入要进行一次下采样操作)4. 50,101,152层的残差块5. 34层的模型结构图:...原创 2020-07-05 21:42:57 · 3667 阅读 · 0 评论 -
VGG模型代码整理
1. VGG模型2. 用2次3*3卷积代替5*5卷积,3次3*3卷积代替7*7卷积。(1)卷积结果对应原图的感受野计算: (F(i)表示第i层的感受野,如果是最上层的就是1,如果多次卷积就多次迭代计算。) 例如:三次3*3卷积代替7*7卷积 F=1, F3=(1-1)*1+3=3, F2=(3-1)*1+3=5, F1=(5-1)*1+3=7(2) 参数量对比 ① 7*7: 7*7*channels*channels=49...原创 2020-07-05 20:54:33 · 2788 阅读 · 1 评论 -
AlexNet模型代码整理
1. 网络模型(论文是用两块gpu并行训练的,所以图中的模型是上下两部分的,第一层卷积核的个数是48+48=96)2. 模型参数3. 模型代码import torch.nn as nnimport torchclass AlexNet(nn.Module): def __init__(self, num_classes=1000, init_weights=False): super(AlexNet, self).__init__() .原创 2020-07-05 20:28:32 · 1165 阅读 · 0 评论 -
pytorch笔记13--过拟合&dropout
导致过拟合的原因:训练网络的数据量太少;网络神经元太多;解决过拟合:增加训练时的数据量;正规化;dropout(每次随机丢弃一定数量的neuron,防止对神经元的过分依赖)1. 训练过程用两个不同的网络测试,动图如下:(自己截动图很麻烦,所以从网上拿来的)2. 自己运行的结果图如下:可以看到没加dropout的网络几乎照顾到了每一个训练数据(过拟合),但是对测试数据来说效果就很差...原创 2020-04-02 21:44:47 · 451 阅读 · 0 评论 -
pytorch笔记12--无监督的AutoEncoder(自编码)
1. AutoEncoder: 给特征属性降维2. Data---->压缩(提取Data的关键信息,减小网络的运算压力)---->data(具有代表性的特征)---->解压(还原数据信息)---->Pred_Data3. 使用Mnist数据集训练,将数据先压缩再解压,并用训练集的前5张图片可视化训练的过程,过程图和结果图如下:可视化训练集前200张图片的预测...原创 2020-03-31 20:50:05 · 2069 阅读 · 2 评论 -
pytorch笔记11_RNN回归
用sin曲线你个cos上的数据:# 用sin曲线拟合cos曲线上的数据import torchimport torch.nn as nnimport numpy as npimport matplotlib.pyplot as plttorch.manual_seed(1)# Hyper parametersTIME_STEP=10INPUT_SIZE=1 ...原创 2020-03-31 14:58:29 · 650 阅读 · 0 评论 -
pytorch笔记10--RNN 图片分类
图片如下:# RNN循环神经网络 分类 (时间顺序,图片从上往下读取)import torchimport torch.nn as nnimport torchvision.datasetsimport torchvision.transforms as transformsimport matplotlib.pyplot as pltimport torch.utils....原创 2020-03-27 21:48:33 · 2084 阅读 · 0 评论 -
pytorch笔记9--CNN & GPU加速
数字识别#数字识别import torchimport torch.nn as nnimport torch.utils.data as Dataimport torchvisionimport matplotlib.pyplot as plttorch.manual_seed(1)# Hyper ParametersEPOCH = 1BATCH_SIZE = 50...原创 2020-03-26 18:39:31 · 942 阅读 · 2 评论 -
pytorch笔记8--optimizer
对比各种优化器的效果数据分布如下图:import torchimport torch.utils.data as Dataimport torch.nn.functional as Funcfrom matplotlib import pyplot as plttorch.manual_seed(1)#hyper parametersLR=0.01BATCH_SIZ...原创 2020-03-24 23:36:07 · 196 阅读 · 0 评论 -
pytorch笔记7--批训练
import torchimport torch.utils.data as Data #用于小批训练torch.manual_seed(1) #为cpu设置随机种子,使多次运行结果一致# torch.cuda.manual_seed(seed) #为当前GPU设置随机种子#torch.cuda.manual_seed_all(seed) #为所有GPU设置随机种子Ba...原创 2020-02-06 12:31:48 · 190 阅读 · 0 评论 -
深度学习笔记--Kaggle比赛之房价预测
#获取和读取数据import torchimport torch.nn as nnimport pandas as pd #处理数据import All_function as func #自定义包torch.set_default_tensor_type(torch.FloatTensor)train_data=pd.read_csv('Kaggle_...原创 2019-11-26 15:34:50 · 848 阅读 · 1 评论 -
pytorch笔记4--回归(关系拟合)
一、描述神经网络如何通过简单的形式将一群数据用一条线在表示。找到数据之间的关系,然后通过神经网络模型来建立一个可以表示他们关系的曲线。二、步骤1.创建数据集:创建一些假数据来模拟。令,给y加上一些噪声。import torchimport matplotlib.pyplot as pltfrom torch.autograd import Variable#建立数...原创 2019-08-17 21:40:08 · 780 阅读 · 0 评论 -
pytorch学习笔记3--activation function 激活函数
一、什么是激活函数激活函数在深度学习中应用广泛。所谓激活函数,就是在神经网络的神经元上运行的函数,负责将神经元的输入(input layer)映射到输出端(output layer),也就是对隐藏层(hidden layer)进行处理的函数。常见的激活函数包括sigmoid、tanh、relu、softplus和softmax函数。二、这些函数的图像这些函数的共同特点就是他们都是非线性...原创 2019-08-16 12:41:31 · 1350 阅读 · 0 评论 -
pytorch学习笔记2--Variable变量
一、Variable是什么?在torch中的Variable就是一个存放会变化的值的地理位置,里面的值会不断的变化。就像是一个装鸡蛋的篮子,里面的鸡蛋数会不停变动。就是torch里面的tensor会不断的变化,如果用Variable进行计算,那么返回的也是同一类型的Variable。import torchfrom torch.autograd import Variable#鸡蛋...原创 2019-08-16 11:09:26 · 426 阅读 · 0 评论 -
pytorch学习笔记1--torch和numpy的对比
一、numpy和torchnumpy是python中处理数据的模块,可以处理各种的矩阵(matrix)。 Torch自称为神经网络中的numpy。它会将torch产生的tensor放在GPU中加速运算,就像numpy会把array放在CPU中加速运算。numpy和torch能很好的兼容,对于数据的运算形式也十分相似。numpy array和torch tensor之间也能很好的转换。二...原创 2019-08-15 21:15:19 · 5261 阅读 · 0 评论 -
pytorch笔记6--网络的保存和提取
一、步骤1.创建数据import torchimport torch.nnimport matplotlib.pyplot as pltfrom torch.autograd import Variablex=torch.unsqueeze(torch.linspace(-1,1,100),dim=1)y=x**2+0.2*torch.rand(x.size())x=Vari...原创 2019-08-20 16:13:39 · 568 阅读 · 0 评论 -
pytorch笔记5--分类
一、描述:用简单的例子看一下神经网络是怎么分类的:二、步骤1.创建数据import torchimport matplotlib.pyplot as pltimport torch.functional as funcfrom torch.autograd import Variableimport torch.nn#有两组数据,一组数据属于分类1,一组数据属于分...原创 2019-08-19 19:54:10 · 349 阅读 · 0 评论