ResNet模型代码整理

1. ResNet模型

2.  左图为18层,34层模型的一个残差块,右图为50层,101层,152层的残差块

3.  18层,34层的残差块(虚线部分表示输入要进行一次下采样操作)

4. 50,101,152层的残差块

5. 34层的模型结构图,下图残差块分为4部分,2,3,4部分的第一个残差块是需要对输入进行下采样操作的:

6. 模型代码:(18和34层的残差块是相似的,50/101/152层的残差块是一样的,这两种残差块分开定义,注意2,3,4部分中的第一个残差块的下采样操作)

import torch.nn as nn
import torch


class BasicBlock(nn.Module):              # 18层或34层残差网络的 残差模块
    expansion = 1                # 记录各个层的卷积核个数是否有变化

    def __init__(self, in_channel, out_channel, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel,
                               kernel_size=3, stride=stride, padding=1, bias=False)  # 有无bias对bn没多大影响
        self.bn1 = nn.BatchNorm2d(out_channel)
        self.relu = nn.ReLU()


        self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel,
                               kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channel)

        self.downsample = downsample

    def forward(self, x):
        identity = x         # 记录上一个残差模块输出的结果
        if self.downsample is not None:
            identity = self.downsample(x)

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        out += identity
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):        # 50层,101层,152层的残差网络的 残差模块
    expansion = 4        #   第三层卷积核的个数(256,512,1024,2048)是第一层或第二层的卷积核个数(64,128,256,512)的4倍

    def __init__(self, in_channel, out_channel, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel,
                               kernel_size=1, stride=1, bias=False)  # squeeze channels 降维
        self.bn1 = nn.BatchNorm2d(out_channel)
        # self.relu = nn.ReLU(inplace=True)

        self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel,
                               kernel_size=3, stride=stride, bias=False, padding=1)
        self.bn2 = nn.BatchNorm2d(out_channel)
        # self.relu = nn.ReLU(inplace=True)

        self.conv3 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel*self.expansion,
                               kernel_size=1, stride=1, bias=False)  # unsqueeze channels 升维
        self.bn3 = nn.BatchNorm2d(out_channel*self.expansion)
        self.relu = nn.ReLU(inplace=True)

        self.downsample = downsample

    def forward(self, x):
        identity = x
        if self.downsample is not None:
            identity = self.downsample(x)

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        out += identity
        out = self.relu(out)

        return out


class ResNet(nn.Module):       # 网络框架

    # 参数:block         如果定义的是18层或34层的框架 就是BasicBlock, 如果定义的是50,101,152层的框架,就是Bottleneck
    #       blocks_num   残差层的个数,对应34层的残差网络就是 [3,4,6,3]
    #       include_top  方便以后在resnet的基础上搭建更复杂的网络

    def __init__(self, block, blocks_num, num_classes=1000, include_top=True):
        super(ResNet, self).__init__()
        self.include_top = include_top
        self.in_channel = 64     # 上一层的输出channel数,及这一层的输入channel数

        #   part 1 卷积+池化  conv1+pooling
        self.conv1 = nn.Conv2d(3, self.in_channel, kernel_size=7, stride=2,
                               padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(self.in_channel)
        self.relu = nn.ReLU(inplace=True)   #利用in-place计算可以节省内(显)存,同时还可以省去反复申请和释放内存的时间。但是会对原变量覆盖,只要不带来错误就用。计算结果不会有影响
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        #   part 2  残差网络的四部分残差块:conv2,3,4,5
        self.layer1 = self._make_layer(block, 64, blocks_num[0])  # 5中不同深度的残差网络的第一部分残差块个数:2,3,3,3,3
        self.layer2 = self._make_layer(block, 128, blocks_num[1], stride=2)# 5中不同深度的残差网络的第一部分残差块个数:2,4,4,4,8
        self.layer3 = self._make_layer(block, 256, blocks_num[2], stride=2)# 5中不同深度的残差网络的第一部分残差块个数:2,6,6,23,36
        self.layer4 = self._make_layer(block, 512, blocks_num[3], stride=2)# 5中不同深度的残差网络的第一部分残差块个数:2,3,3,3,3

        #   part 3  平均池化层+全连接层
        if self.include_top:
            self.avgpool = nn.AdaptiveAvgPool2d((1, 1))  # output size = (1, 1)
            self.fc = nn.Linear(512 * block.expansion, num_classes)

        # 卷积层的初始化操作
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')

    def _make_layer(self, block, channel, block_num, stride=1):
        downsample = None
        if stride != 1 or self.in_channel != channel * block.expansion:
            # 虚线部分
            downsample = nn.Sequential(
                nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(channel * block.expansion))

        layers = []
        layers.append(block(self.in_channel, channel, downsample=downsample, stride=stride))
        self.in_channel = channel * block.expansion

        for _ in range(1, block_num):
            layers.append(block(self.in_channel, channel)) # stride=1,downsample=None

        return nn.Sequential(*layers)   # 将list转换为非关键字参数传入

    def forward(self, x):

        # part 1
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        # part 2
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        # part 3
        if self.include_top:
            x = self.avgpool(x)
            x = torch.flatten(x, 1)
            x = self.fc(x)

        return x


def resnet34(num_classes=1000, include_top=True):
    return ResNet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)


def resnet101(num_classes=1000, include_top=True):
    return ResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, include_top=include_top)

7. 实验源码

  • 5
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1.项目代码功能经验证ok,确保稳定可靠运行。欢迎下载使用! 2.主要针对各个计算机相关专业,包括计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网等领域的在校学生、专业教师或企业员工使用。 3.项目具有丰富的拓展空间,不仅可作为入门进阶,也可直接作为毕设、课程设计、大作业、初期项目立项演示等用途。 4.当然也鼓励大家基于此进行二次开发。在使用过程中,如有问题或建议,请及时私信沟通。 5.期待你能在项目中找到乐趣和灵感,也欢迎你的分享和反馈! 【资源说明】 基于ResNet50和Cifar10数据集的全卷积图像识别分类源码+项目说明(Jupyter Notebook运行).zip **全卷积模型**:本项目将**CNN**模式后面的**全连接层换成卷积层**,所以整个网络都是**卷积层**。其最后输出的是一张已经标记好的**热图**,而**不是一个概率值**。 通常的CNN网络中,在最后都会有几层全连接网络来融合特征信息,然后再对融合后的特征信息进行softmax分类,如下图所示: 假设最后一层的**feature_map**的大小是**7x7x512**,那么**全连接层**做的事就是用**4096个7x7x512**的滤波器去卷积这个最后的**feature_map**。所以可想而知这个参数量是很大的!! 但是**全卷积网络**就简单多了。**FCN**的做法是将最后的全连接层替换为**4096个1x1x512**的**卷积核**,所以最后得出来的就是一个二维的图像,然后再对这个二维图像进行**上采样**(反卷积),然后再对最后反卷积的图像的每个像素点进行softmax分类。 我们都知道卷积层后的**全连接目的**是将 卷积输出的二维特征图(feature map)转化成($N\times 1$)**一维的一个向量**因为传统的卷积神经网络的输出都是分类(一般都是**一个概率值**),也就是几个类别的概率甚至就是一个类别号,那么全连接层就是高度提纯的特征了,方便交给最后的分类器或者回归。 根据全连接的目的,我们完全可以利用卷积层代替全连接层,在输入端使用 $M\times M$ 大小的卷积核将数据“扁平化处理”,在使用 $1\times 1$ 卷积核对数据进行降维操作,最终卷积核的通道数即是我们预测数据的维度。这样在输入端不将数据进行扁平化处理,还可以使得图片保留其空间信息: 使用全卷积层的优点: * 全卷积层能够兼容不同大小的尺寸输入。 * 与global avg pooling类似,可以大大减少网络参数量 **CIFAR-10**是一个更接近**普适物体**的彩色图像数据集。CIFAR-10 是由Hinton 的学生Alex Krizhevsky 和Ilya Sutskever 整理的一个用于识别普适物体的小型数据集。一共包含**10 个类别**的**RGB**彩色图片:**飞机**(airplane)、**汽车**(automobile)、**鸟类**(bird)、**猫**(cat)、**鹿**(deer)、**狗**(dog)、**蛙类**(frog)、**马**(horse)、**船**(ship)和**卡车**(truck). 每个图片的尺寸为$32\times 32$,每个类别有**6000**个图像,数据集中一共有**50000**张训练图片和**10000**张测试图片。
抱歉,作为AI语言模型,我没有实际的计算和存储功能,无法为您提供完整的代码。但我可以给您提供一些基本的步骤和示例代码,帮助您开始训练ResNet模型并保存代码。 1. 导入必要的库 ```python import tensorflow as tf from tensorflow.keras.layers import Dense, Flatten, Conv2D from tensorflow.keras import Model from tensorflow.keras.applications.resnet50 import ResNet50 ``` 2. 加载数据集 ```python # 加载数据集,这里以CIFAR-10为例 (x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data() # 数据预处理 x_train, x_test = x_train / 255.0, x_test / 255.0 ``` 3. 定义ResNet模型 ```python # 加载ResNet50预训练模型 base_model = ResNet50(weights='imagenet', include_top=False, input_shape=(32, 32, 3)) # 冻结前面的层不参与训练 for layer in base_model.layers: layer.trainable = False # 定义新的输出层 x = base_model.output x = Flatten()(x) x = Dense(1024, activation='relu')(x) predictions = Dense(10, activation='softmax')(x) # 组合成新的模型 model = Model(inputs=base_model.input, outputs=predictions) ``` 4. 编译模型并训练 ```python model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train, epochs=10, validation_data=(x_test, y_test)) ``` 5. 保存模型 ```python # 保存模型结构和权重 model.save('my_resnet_model.h5') # 保存模型结构 model_json = model.to_json() with open('my_resnet_model.json', 'w') as json_file: json_file.write(model_json) # 保存权重 model.save_weights('my_resnet_weights.h5') ``` 以上是一个简单的ResNet模型训练和保存的示例代码,您可以根据自己的需求进行修改和扩展。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值