ResNet模型代码整理

1. ResNet模型

2.  左图为18层,34层模型的一个残差块,右图为50层,101层,152层的残差块

3.  18层,34层的残差块(虚线部分表示输入要进行一次下采样操作)

4. 50,101,152层的残差块

5. 34层的模型结构图,下图残差块分为4部分,2,3,4部分的第一个残差块是需要对输入进行下采样操作的:

6. 模型代码:(18和34层的残差块是相似的,50/101/152层的残差块是一样的,这两种残差块分开定义,注意2,3,4部分中的第一个残差块的下采样操作)

import torch.nn as nn
import torch


class BasicBlock(nn.Module):              # 18层或34层残差网络的 残差模块
    expansion = 1                # 记录各个层的卷积核个数是否有变化

    def __init__(self, in_channel, out_channel, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel,
                               kernel_size=3, stride=stride, padding=1, bias=False)  # 有无bias对bn没多大影响
        self.bn1 = nn.BatchNorm2d(out_channel)
        self.relu = nn.ReLU()


        self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel,
                               kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channel)

        self.downsample = downsample

    def forward(self, x):
        identity = x         # 记录上一个残差模块输出的结果
        if self.downsample is not None:
            identity = self.downsample(x)

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        out += identity
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):        # 50层,101层,152层的残差网络的 残差模块
    expansion = 4        #   第三层卷积核的个数(256,512,1024,2048)是第一层或第二层的卷积核个数(64,128,256,512)的4倍

    def __init__(self, in_channel, out_channel, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel,
                               kernel_size=1, stride=1, bias=False)  # squeeze channels 降维
        self.bn1 = nn.BatchNorm2d(out_channel)
        # self.relu = nn.ReLU(inplace=True)

        self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel,
                               kernel_size=3, stride=stride, bias=False, padding=1)
        self.bn2 = nn.BatchNorm2d(out_channel)
        # self.relu = nn.ReLU(inplace=True)

        self.conv3 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel*self.expansion,
                               kernel_size=1, stride=1, bias=False)  # unsqueeze channels 升维
        self.bn3 = nn.BatchNorm2d(out_channel*self.expansion)
        self.relu = nn.ReLU(inplace=True)

        self.downsample = downsample

    def forward(self, x):
        identity = x
        if self.downsample is not None:
            identity = self.downsample(x)

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        out += identity
        out = self.relu(out)

        return out


class ResNet(nn.Module):       # 网络框架

    # 参数:block         如果定义的是18层或34层的框架 就是BasicBlock, 如果定义的是50,101,152层的框架,就是Bottleneck
    #       blocks_num   残差层的个数,对应34层的残差网络就是 [3,4,6,3]
    #       include_top  方便以后在resnet的基础上搭建更复杂的网络

    def __init__(self, block, blocks_num, num_classes=1000, include_top=True):
        super(ResNet, self).__init__()
        self.include_top = include_top
        self.in_channel = 64     # 上一层的输出channel数,及这一层的输入channel数

        #   part 1 卷积+池化  conv1+pooling
        self.conv1 = nn.Conv2d(3, self.in_channel, kernel_size=7, stride=2,
                               padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(self.in_channel)
        self.relu = nn.ReLU(inplace=True)   #利用in-place计算可以节省内(显)存,同时还可以省去反复申请和释放内存的时间。但是会对原变量覆盖,只要不带来错误就用。计算结果不会有影响
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        #   part 2  残差网络的四部分残差块:conv2,3,4,5
        self.layer1 = self._make_layer(block, 64, blocks_num[0])  # 5中不同深度的残差网络的第一部分残差块个数:2,3,3,3,3
        self.layer2 = self._make_layer(block, 128, blocks_num[1], stride=2)# 5中不同深度的残差网络的第一部分残差块个数:2,4,4,4,8
        self.layer3 = self._make_layer(block, 256, blocks_num[2], stride=2)# 5中不同深度的残差网络的第一部分残差块个数:2,6,6,23,36
        self.layer4 = self._make_layer(block, 512, blocks_num[3], stride=2)# 5中不同深度的残差网络的第一部分残差块个数:2,3,3,3,3

        #   part 3  平均池化层+全连接层
        if self.include_top:
            self.avgpool = nn.AdaptiveAvgPool2d((1, 1))  # output size = (1, 1)
            self.fc = nn.Linear(512 * block.expansion, num_classes)

        # 卷积层的初始化操作
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')

    def _make_layer(self, block, channel, block_num, stride=1):
        downsample = None
        if stride != 1 or self.in_channel != channel * block.expansion:
            # 虚线部分
            downsample = nn.Sequential(
                nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(channel * block.expansion))

        layers = []
        layers.append(block(self.in_channel, channel, downsample=downsample, stride=stride))
        self.in_channel = channel * block.expansion

        for _ in range(1, block_num):
            layers.append(block(self.in_channel, channel)) # stride=1,downsample=None

        return nn.Sequential(*layers)   # 将list转换为非关键字参数传入

    def forward(self, x):

        # part 1
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        # part 2
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        # part 3
        if self.include_top:
            x = self.avgpool(x)
            x = torch.flatten(x, 1)
            x = self.fc(x)

        return x


def resnet34(num_classes=1000, include_top=True):
    return ResNet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)


def resnet101(num_classes=1000, include_top=True):
    return ResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, include_top=include_top)

7. 实验源码

### 回答1: resnet是一个非常流行的深度学习模型,在计算机视觉领域被广泛应用。在CSDN(中国最大的技术社交平台)上可以找到很多关于resnet代码的文章和教程。 在csdn上,有很多作者分享了他们的resnet代码实现和使用方法。这些文章通常包含了代码的解析和实际应用的说明。通过这些代码示例,我们可以学习和理解resnet的原理和实现方式。 在这些文章中,一般会介绍resnet的结构和特点,例如深度残差网络的概念和核心思想。然后作者会逐步讲解每一层的详细实现和参数设置,以及如何通过代码实现模型的训练和预测。 通过阅读这些文章,我们可以学习到如何使用Python和深度学习框架(比如PyTorch或TensorFlow)来实现resnet。通过这些代码示例,我们可以了解到如何构建resnet模型网络结构,以及如何调整和优化模型的参数。 此外,我们还可以学习到一些关于数据预处理、训练过程和结果评估的技巧。这些经验对于我们自己实现或修改resnet代码非常有帮助。 总之,在csdn上可以找到很多关于resnet代码的资源。通过阅读这些文章和教程,我们可以更好地理解和应用resnet模型,以及深度学习领域的相关知识。 ### 回答2: ResNet是深度学习领域中非常著名的神经网络模型之一,其突出特点是通过使用残差连接(residual connection)来解决深层网络训练中的梯度消失问题。这一概念的引入极大地促进了深度神经网络的训练和优化。 如果想要查看ResNet代码,可以在CSDN(中国最大的IT社区平台)上搜索相关资源。在CSDN上,可以找到许多博主分享的关于ResNet代码示例。这些示例包括不同的深度学习框架(如TensorFlow、PyTorch等)下的实现代码,以及适用于不同任务(如图像分类、目标检测等)的代码。 在查找ResNet代码的过程中,推荐按照具体任务需求进行筛选,以找到适合自己的实现代码。同时,也可以根据博主的博文评价和代码优劣进行选择。在选择合适的代码之后,可以通过阅读代码了解ResNet的具体实现原理和细节,以及如何在实践中应用该模型。 总之,如果想要找到ResNet代码,可以通过CSDN这一资源分享平台进行搜索。希望我的回答能够对你有所帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值