HDU 初级DP专题

最大报销额

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 20128    Accepted Submission(s): 5974


Problem Description
现有一笔经费可以报销一定额度的发票。允许报销的发票类型包括买图书(A类)、文具(B类)、差旅(C类),要求每张发票的总额不得超过1000元,每张发票上,单项物品的价值不得超过600元。现请你编写程序,在给出的一堆发票中找出可以报销的、不超过给定额度的最大报销额。
 

Input
测试输入包含若干测试用例。每个测试用例的第1行包含两个正数 Q 和 N,其中 Q 是给定的报销额度,N(<=30)是发票张数。随后是 N 行输入,每行的格式为:
m Type_1:price_1 Type_2:price_2 ... Type_m:price_m
其中正整数 m 是这张发票上所开物品的件数,Type_i 和 price_i 是第 i 项物品的种类和价值。物品种类用一个大写英文字母表示。当N为0时,全部输入结束,相应的结果不要输出。
 

Output
对每个测试用例输出1行,即可以报销的最大数额,精确到小数点后2位。
 

Sample Input
  
  
200.00 3 2 A:23.50 B:100.00 1 C:650.00 3 A:59.99 A:120.00 X:10.00 1200.00 2 2 B:600.00 A:400.00 1 C:200.50 1200.50 3 2 B:600.00 A:400.00 1 C:200.50 1 A:100.00 100.00 0
Sample Output
  
  
123.50 1000.00 1200.50
Source

坑点:

注意题目中说的  “每项” 是指 每一种,不是每一个

方法1.直接sort(),不用dp,因为背包的每项所占的体积都是1

方法二:将报销的数额作为背包,将实数扩大100 倍。

方法3:

#include<bits/stdc++.h>
using namespace std;
double sum[10000],dp[10000];
int solve(char s[],double &l)  //将字符串转化为实数
{
    int i=0;
    while(s[i]<'0'||s[i]>'9')
    i++;
    while(s[i]>='0'&&s[i]<='9')
    {
        l*=10;
        l+=s[i]-'0';
        i++;
    }
    if(s[i]!='.')
    return 0;
    i++;
    double k=0.1;
    while(s[i]>='0'&&s[i]<='9')
    {
         l+= k*(s[i]-'0');
         k*=0.1;
         i++;
    }
}
char s[1000000];
double a[10];
int main()
{
    double v;
    int n;
    while(~scanf("%lf%d",&v,&n))
    {
        if(n==0)
            break;
        for(int i=0;i<n;i++)
        {
            sum[i]=0;
            int m,flag=0;
            scanf("%d",&m);
            for(int i=0;i<3;i++)
                a[i]=0;
            for(int j=0;j<m;j++)
            {
                scanf("%s",s);      //也可以通过scanf(" %c:%lf");进行处理输入问题
                                    //就不必再有solve()
               // cout<<"#"<<s<<endl;
                if(flag)
                    continue;
                int len=strlen(s);
                if(s[0]!='A'&&s[0]!='B'&&s[0]!='C')
                {
                    sum[i]=0;
                    flag=1;
                    continue;
                }
                double l=0;
                solve(s,l);
                a[s[0]-'A']+=l;
                if(a[s[0]-'A']>600) //表示每一项
                {
                    flag=1;
                    sum[i]=0;
                    continue;
                }
                sum[i]+=l; 
                if(sum[i]>1000)
                {
                    flag=1;
                    sum[i]=0;
                    continue;
                }
            }
        }
        memset(dp,0,sizeof(dp));
        for(int i=0;i<n;i++)
        {
            for(int j=n;j>=1;j--) //以支票个数为容量储存
            {
                dp[j]=max(dp[j],dp[j-1]+sum[i]);
            }
        }
        double Max=0;
        for(int i=n;i>=0;i--)
        {
            if(dp[i]<=v&&Max<dp[i])
            {
                Max=dp[i];
            }
        }
        printf("%.2lf\n",Max);
    }
}
HDU1231

最大连续子序列

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 24172    Accepted Submission(s): 10848


Problem Description
给定K个整数的序列{ N1, N2, ..., NK },其任意连续子序列可表示为{ Ni, Ni+1, ...,
Nj },其中 1 <= i <= j <= K。最大连续子序列是所有连续子序列中元素和最大的一个,
例如给定序列{ -2, 11, -4, 13, -5, -2 },其最大连续子序列为{ 11, -4, 13 },最大和
为20。
在今年的数据结构考卷中,要求编写程序得到最大和,现在增加一个要求,即还需要输出该
子序列的第一个和最后一个元素。
Input
测试输入包含若干测试用例,每个测试用例占2行,第1行给出正整数K( < 10000 ),第2行给出K个整数,中间用空格分隔。当K为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最大和、最大连续子序列的第一个和最后一个元
素,中间用空格分隔。如果最大连续子序列不唯一,则输出序号i和j最小的那个(如输入样例的第2、3组)。若所有K个元素都是负数,则定义其最大和为0,输出整个序列的首尾元素。
Sample Input
  
  
6 -2 11 -4 13 -5 -2 10 -10 1 2 3 4 -5 -23 3 7 -21 6 5 -8 3 2 5 0 1 10 3 -1 -5 -2 3 -1 0 -2 0
Sample Output
  
  
20 11 13 10 1 4 10 3 5 10 10 10 0 -1 -2 0 0 0
Source
浙大计算机研究生复试上机考试-2005年
状态方程:sum[i]=max(sum[i-1]+a[i],a[i]);最后从头到尾扫一边
 
#include<bits/stdc++.h>
using namespace std;
int a[10010];
struct node
{
    int l,r,num;
}dp[10010];
int main()
{
    int n;
    while(~scanf("%d",&n))
    {
        if(n==0)break;
        for(int i=0;i<n;i++)
        {
            scanf("%d",&a[i]);
            dp[i].num=0;
        }
      //  memset(dp,0,sizeof(dp));
        dp[0].num=a[0];
        dp[0].l=a[0];
        dp[0].r=a[0];
        for(int i=1;i<n;i++)
        {
            if(dp[i-1].num<=0)
            {
                dp[i-1].r=a[i-1];
                dp[i].num=a[i];
                dp[i].l=a[i];
            }
            else
            {
                dp[i].l=dp[i-1].l;
                dp[i].num=dp[i-1].num+a[i];
                dp[i].r=a[i];
            }
        }
        int Max=0,flag=-1;
        for(int i=0;i<n;i++)
        {
            if(Max==dp[i].num&&Max==0)
            {
                Max=dp[i].num;
                flag=i;
            }
           else if(Max<dp[i].num)
                { Max=dp[i].num;
                  flag=i;
                }
        }
        if(flag==-1)
            printf("0 %d %d\n",a[0],a[n-1]);
        else
            printf("%d %d %d\n",Max,dp[flag].l,dp[flag].r);
    }
    return 0;
}

HUD1003  Max Sum

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 189626    Accepted Submission(s): 44171


Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
 
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
   
   
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
Sample Output
   
   
Case 1: 14 1 4 Case 2: 7 1 6
 
#include<bits/stdc++.h>
using namespace std;  //数组开小了会TLE
int a[100010];
struct node
{
    int l,r,num;
} dp[100010];
int main()
{int n,Case=0,T;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d",&n);
        for(int i=0; i<n; i++)
        {
            scanf("%d",&a[i]);
            dp[i].num=0;
        }
        dp[0].num=a[0];dp[0].l=1;dp[0].r=1;
        for(int i=1;i<n;i++)
        {
            if(dp[i-1].num<0)
            {
                dp[i-1].r=i;
                dp[i].l=i+1;
                dp[i].num=a[i];
            }
            else
            {
                dp[i-1].r=i;
                dp[i].r=i+1;
                dp[i].num=dp[i-1].num+a[i];
                dp[i].l=dp[i-1].l;
            }
        }
        int Max=dp[0].num,flag=0;
        for(int i=1; i<n; i++)
        {
            if(Max<dp[i].num)
            {
                Max=dp[i].num;
                flag=i;
            }
        }
        if(Case!=0)
            printf("\n");
        Case++;
        printf("Case %d:\n",Case);
        printf("%d %d %d\n",Max,dp[flag].l,dp[flag].r);
    }
    return 0;
}



  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值