实验七 算法编程题4. 最大报销额

【问题描述】现有一笔经费可以报销一定额度的发票。允许报销的发票类型包括买图书(A类)、文具(B类)、差旅(C类),要求每张发票的总额不得超过1000元,每张发票上,单项物品的价值不得超过600元。现请你编写程序,在给出的一堆发票中找出可以报销的、不超过给定额度的最大报销额。

【输入形式】测试输入包含若干测试用例。每个测试用例的第1行包含两个正数 Q 和 N,其中 Q 是给定的报销额度,N(N<=30)是发票张数。随后是 N 行输入,每行的格式为:
      m Type_1:price_1 Type_2:price_2 … Type_m:price_m
      其中正整数 m 是这张发票上所开物品的件数,Type_i 和 price_i 是第 i 项物品的种类和价值。物品种类用一个大写英文字母表示。当N为0时,全部输入结束,相应的结果不要输出。

【输出形式】对每个测试用例输出1行,即可以报销的最大数额,精确到小数点后2位。

【样例输入】

200.00 3
2 A:23.50 B:100.00
1 C:650.00
3 A:59.99 A:120.00 X:10.00
1200.00 2
2 B:600.00 A:400.00
1 C:200.50
1200.50 3
2 B:600.00 A:400.00
1 C:200.50
1 A:100.00
100.00 0

【样例输出】

123.50
1000.00
1200.50

【思路分析】

这是一道典型的0-1背包问题,其中dp[i][j]表示将第i个发票考虑在内时且此时发票额度最大为j时的状态。状态表示为此时能开的最大面额数值。

需要注意的是,最好不要用float或double存储发票面额,会有精度误差。此题数据较为工整,可能不会有太大影响,但最好还是通过扩大100倍的方法来读取数据。

  • 状态转移方程:dp[i][j] = max(dp[i-1][j], dp[i-1][j-v[i]] + v[i]),其中v[i]表示第i个发票的面额
#include<iostream>
#include <vector>
#include <sstream>
#include <climits>

using namespace std;


int main() {
    int q, n;
    while (true) {
        stringstream ss;
        vector<int> v;
        string s;
        cin >> s >> n;
        if (s.length() > 3) s.erase(s.end() - 3);//去掉小数点
        else s.append("00");//再扩大100倍,方便处理
        ss << s;
        ss >> q;
        if (n == 0) return 0;
        int m, price, sum, temN = n;
        char ch;
        while (temN--) {
            sum = 0;
            bool b = false;
            cin >> m;
            while (m--) {
                ss.str(string());
                ss.clear();
                cin >> ch;
                if (ch >= 'A' && ch <= 'C') {
                    cin.get();
                    string temp;
                    cin >> temp;
                    if (temp.length() > 3) temp.erase(temp.end() - 3);
                    else temp.append("00");
                    if (temp == "000") goto flag;
                    ss << temp;
                    ss >> price;
                    if (price > 60000 || price > q) goto flag;//剪枝优化,不需要继续读取
                    sum += price;
                    if (sum > 100000) goto flag;
                } else {
                    flag:
                    string tempS;
                    getline(cin,tempS);//输入流cin清除缓冲区
                    b = true;
                    break;
                }
            }
            if (!b) {
                v.push_back(sum);
            }
        }
        if (v.empty()) {
            cout << "0.00" << endl;
            continue;
        }
        int dp[q + 1] = {0};
        for (int i = 0; i <= q; ++i) {
            if (i < v[0]) dp[i] = 0;
            else dp[i] = v[0];
        }//初始化第一行
        for (int i = 1; i < v.size(); ++i) {
            for (int j = q; j >= v[i]; --j) {
                dp[j] = max(dp[j - v[i]] + v[i], dp[j]);//dp过程,此处采用滚动数组降维
            }
        }
        /*for (int i = 1; i < v.size(); ++i) {
            for (int j = 1; j <= q; ++j) {
                if (v[i] > j) dp[i][j] = dp[i - 1][j];
                else dp[i][j] = max(dp[i - 1][j - v[i]] + v[i], dp[i - 1][j]);
            }
        }       此处是原始方案,未降维*/
        string res = to_string(dp[q]);
        res.insert(res.end() - 2, '.');
        cout << res << endl;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值