【问题描述】现有一笔经费可以报销一定额度的发票。允许报销的发票类型包括买图书(A类)、文具(B类)、差旅(C类),要求每张发票的总额不得超过1000元,每张发票上,单项物品的价值不得超过600元。现请你编写程序,在给出的一堆发票中找出可以报销的、不超过给定额度的最大报销额。
【输入形式】测试输入包含若干测试用例。每个测试用例的第1行包含两个正数 Q 和 N,其中 Q 是给定的报销额度,N(N<=30)是发票张数。随后是 N 行输入,每行的格式为:
m Type_1:price_1 Type_2:price_2 … Type_m:price_m
其中正整数 m 是这张发票上所开物品的件数,Type_i 和 price_i 是第 i 项物品的种类和价值。物品种类用一个大写英文字母表示。当N为0时,全部输入结束,相应的结果不要输出。
【输出形式】对每个测试用例输出1行,即可以报销的最大数额,精确到小数点后2位。
【样例输入】
200.00 3
2 A:23.50 B:100.00
1 C:650.00
3 A:59.99 A:120.00 X:10.00
1200.00 2
2 B:600.00 A:400.00
1 C:200.50
1200.50 3
2 B:600.00 A:400.00
1 C:200.50
1 A:100.00
100.00 0
【样例输出】
123.50
1000.00
1200.50
【思路分析】
这是一道典型的0-1背包问题,其中dp[i][j]表示将第i个发票考虑在内时且此时发票额度最大为j时的状态。状态表示为此时能开的最大面额数值。
需要注意的是,最好不要用float或double存储发票面额,会有精度误差。此题数据较为工整,可能不会有太大影响,但最好还是通过扩大100倍的方法来读取数据。
- 状态转移方程:dp[i][j] = max(dp[i-1][j], dp[i-1][j-v[i]] + v[i]),其中v[i]表示第i个发票的面额
#include<iostream>
#include <vector>
#include <sstream>
#include <climits>
using namespace std;
int main() {
int q, n;
while (true) {
stringstream ss;
vector<int> v;
string s;
cin >> s >> n;
if (s.length() > 3) s.erase(s.end() - 3);//去掉小数点
else s.append("00");//再扩大100倍,方便处理
ss << s;
ss >> q;
if (n == 0) return 0;
int m, price, sum, temN = n;
char ch;
while (temN--) {
sum = 0;
bool b = false;
cin >> m;
while (m--) {
ss.str(string());
ss.clear();
cin >> ch;
if (ch >= 'A' && ch <= 'C') {
cin.get();
string temp;
cin >> temp;
if (temp.length() > 3) temp.erase(temp.end() - 3);
else temp.append("00");
if (temp == "000") goto flag;
ss << temp;
ss >> price;
if (price > 60000 || price > q) goto flag;//剪枝优化,不需要继续读取
sum += price;
if (sum > 100000) goto flag;
} else {
flag:
string tempS;
getline(cin,tempS);//输入流cin清除缓冲区
b = true;
break;
}
}
if (!b) {
v.push_back(sum);
}
}
if (v.empty()) {
cout << "0.00" << endl;
continue;
}
int dp[q + 1] = {0};
for (int i = 0; i <= q; ++i) {
if (i < v[0]) dp[i] = 0;
else dp[i] = v[0];
}//初始化第一行
for (int i = 1; i < v.size(); ++i) {
for (int j = q; j >= v[i]; --j) {
dp[j] = max(dp[j - v[i]] + v[i], dp[j]);//dp过程,此处采用滚动数组降维
}
}
/*for (int i = 1; i < v.size(); ++i) {
for (int j = 1; j <= q; ++j) {
if (v[i] > j) dp[i][j] = dp[i - 1][j];
else dp[i][j] = max(dp[i - 1][j - v[i]] + v[i], dp[i - 1][j]);
}
} 此处是原始方案,未降维*/
string res = to_string(dp[q]);
res.insert(res.end() - 2, '.');
cout << res << endl;
}
}