点击打开链接 老鼠每次只能走k步停下来, 停下的这个位置只能比上一个停留的位置大,并获取其价值,每次只能水平或垂直走,问最大能得到的价值 心得记忆化搜索:算法上依然是搜索的流程,但是搜索到的一些解用 动态规划的那种思想和模式作一些保存。一般说来,动态规划总要遍历所有的状态,而搜索可以排除一些无效状态。更重要的是搜索还可以剪枝,可能剪去大量不必要的状态,因此在空间开销上往往比动态规划要低很多。记忆化算法在求解的时候还是按着自顶向下的顺序,但是每求解一个状态,就将它的解保存下来,以后再次遇到这个状态的时候,就不必重新求解了。这种方法综合了搜索和动态规划两方面的优点,因而还是很有实用价值的。每次dp中都存入遍历了所以情况的最佳结果。遍历过就不用再遍历了#include<cstdio> #include<cstring> #include<cmath> #include<iostream> using namespace std; int m,n; int a[1000][1000]; int dp[1000][1000],Max; int dx[]={1,0,-1,0}; int dy[]={0,1,0,-1}; int judge(int x,int y) { if(x>n||y>n||x<1||y<1) return 1; return 0; } int DFS(int x,int y) { if(dp[x][y]) return dp[x][y]; int ans=0; for(int i=1;i<=m;i++) { for(int j=0;j<4;j++) { int xx=dx[j]*i+x; ///水平或竖直运动 int yy=dy[j]*i+y; if(judge(xx,yy)) continue; if(a[x][y]<a[xx][yy]) ans=max(ans,DFS(xx,yy)); } } dp[x][y]=ans+a[x][y]; ///dp思想dp[x][y]中存最大的数值 return dp[x][y]; //Max=max(dp[x][y],Max); } int main() { while(~scanf("%d%d",&n,&m)) { Max=0; if(n==-1&&m==-1) break; memset(dp,0,sizeof(dp)); for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) scanf("%d",&a[i][j]); printf("%d\n",DFS(1,1)); ///起点是1,1点 } return 0; }
HDU 1078 FatMouse and Cheese 记忆化搜索
最新推荐文章于 2024-08-11 23:22:58 发布