POJ 2947 (高斯消元解同模方程)

公司被吞并,老员工几乎全部被炒鱿鱼。一共有n种不同的工具,编号1-N(代码中是0—N-1), 每种工具的加工时间为3—9天 ,但是现在老员工不在我们不知道每种工具的加工时间,庆幸的是还保留着一些对工人制造工具的记录,对于每个老员工,他的记录包括,他开始工作的时间(在某个星期的星期几),被炒鱿鱼的时间(某个星期的星期几),在第几个星期不知道.....在这段时间里,他正好加工了k件物品,给出了这k件物品的编号。我们要做的就是通过这些记录,来确定每种工具的加工时间是多少。

问每种装饰物需要生产的天数。
如果没有解,则输出“Inconsistent data.”,如果有多解,则输出“Multiple solutions.”,如果
只有唯一解,则输出每种装饰物需要生产的天数。


工作的天数为end-start+1+7*x,并且在[3,9]范围内,所以求得数要是小于3就一定要+7。


设每种装饰物需要生产的天数为xi(1<=i<=n)。每一个条件就相当于
给定了一个方程式,假设生产1 类装饰物a1 件、2 类装饰物a2 件、i 类装饰物ai 件所花费
的天数为b,则可以列出下列方程:

a1*x1+a2*x2+...an*xn = b (mod 7)


该方程是在mod7同余系下的. 所以,方程中的元素都要对应mod7系下的数,所以要先取模再进行其他操作。

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<map>
#define LL long long
#define bug puts("************")
#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std;
const int N=410;
int a[N][N];
int x[N];
int gcd(int a,int b){
    return b==0?a:gcd(b,a%b);
}
int lcm(int a,int b){
    return a/gcd(a,b)*b;
}
LL Inv(LL a,LL m){  ///求逆元,可以用扩欧,或快速幂代替。
    if(a==1) return 1;
    return Inv(m%a,m)*(m-m/a)%m;
}
int Name(char s[]){
    if(!strcmp(s,"MON")) return 1;
    else if(!strcmp(s,"TUE")) return 2;
    else if(!strcmp(s,"WED")) return 3;
    else if(!strcmp(s,"THU")) return 4;
    else if(!strcmp(s,"FRI")) return 5;
    else if(!strcmp(s,"SAT")) return 6;
    else if(!strcmp(s,"SUN")) return 7;
}
int Gauss(int equ,int var){
    int r,k,col;
    for(k=0,col=0;k<equ&&col<var;col++,k++){
        r=k;
        for(int i=k+1;i<equ;i++){
            if(abs(a[i][col])>abs(a[r][col])){
                r=i;
            }
        }
        if(a[r][col]==0){
            k--;continue;
        }
        if(r!=k){
            for(int j=0;j<var+1;j++) swap(a[r][j],a[k][j]);
        }
        for(int i=k+1;i<equ;i++){
            if(a[i][col]!=0){
                int LCM=lcm(abs(a[i][col]),abs(a[k][col]));
                int ta=LCM/abs(a[i][col]);
                int tb=LCM/abs(a[k][col]);
                if(a[i][col]*a[k][col]<0) tb=-tb;
                for(int j=col;j<var+1;j++)
                    a[i][j]=((a[i][j]*ta-a[k][j]*tb)%7+7)%7;
            }
        }
    }

   // cout<<k<<" "<<var<<endl;
    for(int i=k;i<equ;i++){  ///系数矩阵的秩与增广矩阵的秩不想同。
        if(a[i][col]!=0) return -1; ///无解
    }
    if(k<var){
    /*********
        // 首先,自由变元有var - k个,即不确定的变元至少有var - k个.
        for (i = k - 1; i >= 0; i--)
        {
            // 第i行一定不会是(0, 0, ..., 0)的情况,因为这样的行是在第k行到第equ行.
            // 同样,第i行一定不会是(0, 0, ..., a), a != 0的情况,这样的无解的.
            free_x_num = 0; // 用于判断该行中的不确定的变元的个数,如果超过1个,则无法求解,它们仍然为不确定的变元.
            for (j = 0; j < var; j++)
            {
                if (a[i][j] != 0 && free_x[j]) free_x_num++, free_index = j;
            }
            if (free_x_num > 1) continue; // 无法求解出确定的变元.
            // 说明就只有一个不确定的变元free_index,那么可以求解出该变元,且该变元是确定的.
            temp = a[i][var];
            for (j = 0; j < var; j++)
            {
                if (a[i][j] != 0 && j != free_index) temp -= a[i][j] * x[j];
            }
            x[free_index] = temp / a[i][free_index]; // 求出该变元.
            free_x[free_index] = 0; // 该变元是确定的.
        } 
    ***********/
        return var-k;        ///多解,自由元的个数。
    }
    for(int i=var-1;i>=0;i--){
        int tmp=a[i][var];
        for(int j=i+1;j<var;j++){
            if(a[i][j]!=0){
                tmp-=a[i][j]*x[j];
                tmp=(tmp%7+7)%7;
            }
        }
        x[i]=(tmp*Inv(a[i][i],7))%7;
    }
    return 0;
}
int main(){
    int n,m,k,t;
    char s1[10],s2[10];
    while(~scanf("%d%d",&n,&m),n||m){
        memset(a,0,sizeof(a));
        memset(x,0,sizeof(x));

        for(int i=0;i<m;i++){
            scanf("%d%s%s",&k,&s1,&s2);
            a[i][n]=((Name(s2)-Name(s1)+1)%7+7)%7;
            while(k--){
                scanf("%d",&t);
                t--;
                a[i][t]++;
                a[i][t]%=7;      ///不加就错了(会RE),因为此问题求得是mod7同余系下的方程,所以要先mod7。
            }
        }

        int flag=Gauss(m,n);
        //cout<<flag<<endl;
        if(flag==0){
            for(int i=0;i<n;i++){  ///时间是在3到9之间。
                if(x[i]<=2)x[i]+=7;
            }
            for(int i=0;i<n;i++)
                printf("%d%s",x[i],i!=n-1?" ":"\n");
        }
        else if(flag==-1){
            puts("Inconsistent data.");
        }
        else puts("Multiple solutions.");
    }
    return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值