朴素贝叶斯推导

先导说明

  • 我们经常用MLE最大似然来构造模型的目标函数,最大似然的目的是让观测到的数据概率最大,所以最大化的就是训练数据的概率。
  • 而MAP后验是在观测数据之上又加上了先验概率,要让模型符合先验概率。当数据足够多的时候,MAP趋近于MLE。
  • 求极值最容易想到的方法是求导置零。
  • 贝叶斯定理:
    在这里插入图片描述
    也就是联合概率P(A,B)=P(B,A)=P(A|B)*P(B)=P(B|A)*P(A)
  • 朴素贝叶斯是生成模型,建模的就是联合概率
  • 朴素贝叶斯的假设就是各个特征相互独立

朴素贝叶斯推导

以垃圾邮件分类为例: x i , y i x_i,y_i xi,yi表示第i个样本及标签,一个文本又有m个词组成,包括 x i 1 , x i 2 , , , x i m x_i^1,x_i^2,,,x_i^m xi1,xi2,,,xim

目标函数

在这里插入图片描述

第(4)布中间表示这是一个生成模型
联合概率的展开用到贝叶斯定理
从第(5)道第(6)是比较关键的一步,用道朴素贝叶斯的基本假设:各个特征相互独立,所以能得到(6)
然后两边取log:
在这里插入图片描述
(7)-》(8)是将按照第i个文本的单词,写成了对于整个词典中的单词,每一个再第i个文本中出现了几次,两者是等价的 n i j n_{ij} nij表示wj在xi中出现的次数。
(9)是将log里的连乘转化为求和
(10)是将(9)按照类别拆开,同属于k类的放到一起,然后再对所有类别求和,在一个类别里,只计算属于这个类别的数据
(11)只是换了变量方便表示, θ k j \theta_{kj} θkj表示wj在类k中出现的概率 , π k \pi_k πk表示在所有文本中,属于第k类的概率, n k n_k nk即有多少个k类的

这样就得到了目标函数,接下来就是求解极值的问题

求解最大值

上面这个目标函数是有限制条件的,
在这里插入图片描述
(13)表示属于所有类别的概率和为1
(14)表示属于第k类的所有单词出现的概率和为1
为了考虑进去,用拉格朗日惩罚考虑进来,合成一个目标函数,为:
在这里插入图片描述
这样开始求导
π k \pi_k πk求导,无关项不用考虑,求和展开也知道只有一个与具体的k有关
在这里插入图片描述
这里还有一个参数 λ \lambda λ,根据限制条件(15),从(19)表示出 π k \pi_k πk在这里插入图片描述求和为1,可以得到:
在这里插入图片描述
在这里插入图片描述
再带回到(19)中,可以求得 π k \pi_k πk
在这里插入图片描述
接下来求 θ k j \theta_{kj} θkj,方法一样:
在这里插入图片描述
再用第二个限制条件,同样的方法求 λ k \lambda_k λk在这里插入图片描述
代入可得 θ k j \theta_{kj} θkj
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值