朴素贝叶斯
条件
X
为n维向量空间,
公式推导
假设在可以观察到的空间(训练集)中,可以观察
有:
P(X=xi|Y=yi)P(Y=yi)=P(X=xi,Y=yi)
P(Y=yi|X=xi)P(X=xi)=P(X=xi,Y=yi)
得:
P(X=xi|Y=yi)P(Y=yi)=P(Y=yi|X=xi)P(X=xi)
==> P(Y=yi|X=xi)=P(X=xi|Y=yi)P(Y=yi)P(X=xi)
又:
P(X=xi)=∑kj=1P(X=xi|Y=yj)P(Y=yj)
联立得:
P(Y=yi|X=xi)=P(X=xi|Y=yi)P(Y=yi)∑kj=1P(X=xi|Y=yj)P(Y=yj)
朴素贝叶斯的基本假设:
条件概率
P(X=xi|Y=yi)=P(X(1)=xi(1),X(2)=xi(2),...,X(n)=xi(n)|Y=yi)
要估计这样的联合概率复杂度很高,因为训练集中不一定能观测导所有的
X
的可能情况。因此提出基本假设,所有的训练集
斯的基本假设:
条件概率
P(X=xi|Y=yi)=P(X(1)=xi(1),X(2)=xi(2),...,X(n)=xi(n)|Y=yi)
=∏nm=1P(X(m)=xi(m)|Y=yi)
则公式为:
P(Y=yi|X=xi)=P(Y=yi)∏nm=1P(X(m)=xi(m)|Y=yi)∑kj=1P(Y=yj)∏nm=1P(X(m)=xi(m)|Y=yj)
=P(Y=yi)∏nm=1P(X(m)=xi(m)|Y=yi)P(X=xi)
判断时遍历所有可能的 yi ,取其中概率最大的值,而对于所有的 yi ,分母不管怎么算都相等,最后的判别公式为
Y(X)=argmaxY{P(Y=yi)∏nm=1P(X(m)=xi(m)|Y=yi)}
简单来说,就是假设现在是第
i
类,同时个各个