暑期SMALE魔鬼训练day4

暑期SMALE魔鬼训练day4
上午:

定义无向网络

答:Definition 11.4 A undirected net is a tuple G = ( V , w ) G = (\mathbf{V}, w) G=(V,w), where V \mathbf{V} V is the set of nodes, and w : V × V → R w: \mathbf{V} \times \mathbf{V} \to \mathbb{R} w:V×VR is the weight function where w ( v i , v j ) w ( v_i , v_j ) w(vi,vj) is the weight of the edge ( v i , v j ) (v_i, v_j) (vi,vj), and ∀ ⟨ v i , v j ⟩ ∈ V × V , s . t . w ( v i , v j ) = w ( v j , v i ) \forall \langle v_i, v_j \rangle \in \mathbf{V} \times \mathbf{V}, s.t. w ( v_i , v_j ) = w ( v_j , v_i ) vi,vjV×V,s.t.w(vi,vj)=w(vj,vi).

  1. 自己画一棵树, 将其元组各部分写出来 (特别是函数 p p p).
  2. 针对该树, 将代码中的变量值写出来 (特别是 parent 数组).

在这里插入图片描述
T = { V , r , p } T = \{\mathbf{V}, r, p\} T={V,r,p}
节点集合 V = { 1 , 2 , 3 , 4 , 5 , 6 } \mathbf{V} = \{1, 2, 3, 4, 5, 6\} V={1,2,3,4,5,6}
根节点 r = 1 r = 1 r=1
p ( 1 ) = ϕ p(1) = \phi p(1)=ϕ
p ( 2 ) = 1 p(2) = 1 p(2)=1
p ( 3 ) = 1 p(3) = 1 p(3)=1
p ( 4 ) = 1 p(4) = 1 p(4)=1
p ( 5 ) = 2 p(5) = 2 p(5)=2
p ( 6 ) = 2 p(6) = 2 p(6)=2
代码:

public class Tree {
	/**
	 * 节点数. 表示节点 v_0 至 v_{n-1}.
	 */
	int n;
	
	/**
	 * 根节点. 0 至 n-1.
	 */
	int root;
	
	/**
	 * 父节点.
	 */
	int[] parent;

	/**
	 * 构造一棵树, 第一个节点为根节点, 其余节点均为其直接子节点, 也均为叶节点.
	 */
	public Tree(int paraN) {
		n = paraN;
		parent = new int[n];
		parent[0] = -1; // -1 即 \phi
	}// Of the constructor
}//Of class Tree

对应的变量值如下:

n = 6;
root = 0;
parent = {-1, 0, 0, 0, 1, 1}

晚上:

画一棵三叉树, 并写出它的 child 数组.
按照本贴风格, 重新定义树. 提示: 还是应该定义 parent 函数,
字母表里面只有一个元素. 根据图、树、m mm-叉树的学习, 谈谈你对元组的理解.

三叉树:
在这里插入图片描述
child数组:
[ 1 2 3 − 1 − 1 − 1 4 5 6 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 ] \left[\begin{matrix} 1 & 2 & 3 \\ -1 & -1 & -1\\ 4 & 5 & 6\\ -1 & -1 & -1\\ -1 & -1 & -1\\ -1 & -1 & -1\\ -1 & -1 & -1\\ \end{matrix}\right] 114111121511113161111

重新定义树:
Let ϕ \phi ϕ be the empty node, a tree is a quadruple T = ( V , r , Σ , p ) T=(\mathbf{V},r,\Sigma,p) T=(V,r,Σ,p) where

V ≠ ∅ \mathbf{V} \neq \emptyset V=is the set of nodes;
r ∈ V r\in \mathbf{V} rV is the root node;
Σ = { 0 } \Sigma=\{0\} Σ={0} is the alphabet;
p : V → V ∪ { ϕ } p:\mathbf{V}\to\mathbf{V}\cup\{\phi\} p:VV{ϕ} is the parent mapping satisfying;
p ( r ) = ϕ p(r)=\phi p(r)=ϕ;
∀ v ∈ V , ∃ 1 n ≥ 0 \forall v\in \mathbf{V},\exists1n\geq 0 vV1n0and 1 s ∈ Σ 1s\in \Sigma 1sΣ, st. p ( n ) ( v , s ) = r p^{(n)}(v,s)=r p(n)(v,s)=r;

对于元组的理解:
元组就是不同类型数据以及数据之间的关系的组合体

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值