暑期SMALE魔鬼训练day2
上午:
-
令 A = { 1 , 2 , 5 , 8 , 9 } \mathbf{A} = \{1, 2, 5, 8, 9\} A={1,2,5,8,9}, 写出 A \mathbf{A} A 上的 “模 2 同余” 关系及相应的划分.
R = { ( a , b ) ∈ A × A ∣ a m o d 2 = b m o d 2 } \mathbf{R} = \{(a, b) \in \mathbf{A} \times \mathbf{A} \vert a \mod 2 = b \mod 2\} R={(a,b)∈A×A∣amod2=bmod2}
P = { { 1 , 5 , 9 } , { 2 , 8 } } \mathcal{P} = \{\{1, 5, 9\}, \{2, 8\}\} P={{1,5,9},{2,8}} -
A = { 1 , 2 , 5 , 8 , 9 } \mathbf{A} = \{1, 2, 5, 8, 9\} A={1,2,5,8,9}, 自己给定两个关系 R 1 \mathbf{R}_1 R1和 R 2 \mathbf{R}_2 R2, 并计算 R 1 ∘ R 2 \mathbf{R}_1 \circ \mathbf{R}_2 R1∘R2, R 1 + \mathbf{R}_1^+ R1+, R 1 ∗ \mathbf{R}_1^* R1∗
R 1 = { ( 1 , 2 ) , ( 2 , 9 ) } \mathbf{R}_1 = \{(1, 2), (2, 9)\} R1={(1,2),(2,9)}
R 2 = { ( 2 , 5 ) , ( 2 , 8 ) } \mathbf{R}_2 = \{(2, 5), (2, 8)\} R2={(2,5),(2,8)}
R 1 ∘ R 2 = { ( 1 , 5 ) , ( 1 , 8 ) } \mathbf{R}_1 \circ \mathbf{R}_2 = \{(1, 5), (1, 8)\} R1∘R2={(1,5),(1,8)}
R 1 + = ⋃ i = 1 ∣ A ∣ R i = { ( 1 , 2 ) , ( 2 , 9 ) , ( 1 , 9 ) } \mathbf{R}_1^+ = \bigcup_{i = 1}^{\vert{\mathbf{A}}\vert}R^i = \{(1, 2), (2, 9), (1, 9)\} R1+=⋃i=1∣A∣Ri={(1,2),(2,9),(1,9)}
R 1 ∗ = R 1 + ∪ A 0 = { ( 1 , 2 ) , ( 2 , 9 ) , ( 1 , 9 ) , ( 1 , 1 ) , ( 2 , 2 ) , ( 5 , 5 ) , ( 8 , 8 ) , ( 9 , 9 ) } \mathbf{R}_1^* = \mathbf{R}_1^+\cup\mathbf{A}^0 = \{(1, 2), (2, 9), (1, 9), (1, 1), (2, 2), (5, 5), (8, 8), (9, 9)\} R1∗=R1+∪A0={(1,2),(2,9),(1,9),(1,1),(2,2),(5,5),(8,8),(9,9)} -
查阅粗糙集上下近似的定义并大致描述.
转自粗糙集理论
下午:
举例说明你对函数的认识.
设
f
f
f是集合
A
\mathbf{A}
A到
B
\mathbf{B}
B的一个关系,如果对于每个
x
∈
A
x\in \mathbf{A}
x∈A,都存在唯一的
y
∈
B
y \in \mathbf{B}
y∈B,使得
(
x
,
y
)
∈
f
(x,y) \in f
(x,y)∈f,则关系
f
f
f称作集合
A
\mathbf{A}
A到
B
\mathbf{B}
B的函数或者映射,记为
f
:
A
→
B
f: \mathbf{A} \to \mathbf{B}
f:A→B。函数是一种特殊的关系,可以进行关系的基本运算,但是,函数的交、差、并、补的结果不一定是函数
晚上:
自己给定一个矩阵并计算其各种范数.
矩阵
A
=
[
1
6
8
5
−
6
3
]
\mathbf{A} = \left[\begin{matrix} 1 & 6 & 8 \\ 5 & -6 & 3\\ \end{matrix}\right]
A=[156−683]
l
0
l_0
l0范数 =
∣
∣
A
∣
∣
0
=
∣
{
(
i
,
j
)
∣
i
,
j
≠
0
}
∣
=
6
||\mathbf{A}||_0 = \vert\{(i,j) \vert_{i,j} \neq 0\} \vert= 6
∣∣A∣∣0=∣{(i,j)∣i,j=0}∣=6
l
1
l_1
l1范数 =
∣
∣
A
∣
∣
1
=
∑
i
,
j
∣
a
i
,
j
∣
=
29
||\mathbf{A}||_1 = \sum_{i,j}\vert a_{i,j} \vert= 29
∣∣A∣∣1=i,j∑∣ai,j∣=29
l
2
l_2
l2范数 =
∣
∣
A
∣
∣
2
=
∑
i
,
j
∣
a
i
,
j
∣
2
=
171
||\mathbf{A}||_2 = \sqrt {\sum_{i,j}\vert a_{i,j} \vert^2}= \sqrt{171}
∣∣A∣∣2=i,j∑∣ai,j∣2=171
l
∞
l_\infty
l∞范数 =
∣
∣
A
∣
∣
∞
=
max
i
,
j
∣
a
i
j
∣
=
8
||\mathbf{A}||_{\infty} = \max{i, j} \vert a_{ij} \vert = 8
∣∣A∣∣∞=maxi,j∣aij∣=8
解释推荐系统: 问题、算法与研究思路2.1 中的优化目标
min
∑
(
i
,
j
)
∈
Ω
(
f
(
x
i
,
t
j
)
−
r
i
j
)
2
\min\sum_{(i, j)\in \Omega}(f(x_i, t_j) - r_{ij})^2
min(i,j)∈Ω∑(f(xi,tj)−rij)2
解释:优化目标是要
min
\min
min损失函数,此处的损失函数为平方差损失,输入为用户信息表
X
\mathbf{X}
X和商品信息表
T
\mathbf{T}
T,经过函数
f
f
f的映射后得到预测值
f
(
x
i
,
t
j
)
f(x_i, t_j)
f(xi,tj),在减去用户评分
r
i
j
r_{ij}
rij,两者的差值做平方,然后在整个数据集上求和,最后通过优化算法找到最小值。