暑期SMALE魔鬼训练day2

暑期SMALE魔鬼训练day2

上午:

  1. A = { 1 , 2 , 5 , 8 , 9 } \mathbf{A} = \{1, 2, 5, 8, 9\} A={1,2,5,8,9}, 写出 A \mathbf{A} A 上的 “模 2 同余” 关系及相应的划分.
    R = { ( a , b ) ∈ A × A ∣ a m o d    2 = b m o d    2 } \mathbf{R} = \{(a, b) \in \mathbf{A} \times \mathbf{A} \vert a \mod 2 = b \mod 2\} R={(a,b)A×Aamod2=bmod2}
    P = { { 1 , 5 , 9 } , { 2 , 8 } } \mathcal{P} = \{\{1, 5, 9\}, \{2, 8\}\} P={{1,5,9},{2,8}}

  2. A = { 1 , 2 , 5 , 8 , 9 } \mathbf{A} = \{1, 2, 5, 8, 9\} A={1,2,5,8,9}, 自己给定两个关系 R 1 \mathbf{R}_1 R1 R 2 \mathbf{R}_2 R2, 并计算 R 1 ∘ R 2 \mathbf{R}_1 \circ \mathbf{R}_2 R1R2, R 1 + \mathbf{R}_1^+ R1+, R 1 ∗ \mathbf{R}_1^* R1
    R 1 = { ( 1 , 2 ) , ( 2 , 9 ) } \mathbf{R}_1 = \{(1, 2), (2, 9)\} R1={(1,2),(2,9)}
    R 2 = { ( 2 , 5 ) , ( 2 , 8 ) } \mathbf{R}_2 = \{(2, 5), (2, 8)\} R2={(2,5),(2,8)}
    R 1 ∘ R 2 = { ( 1 , 5 ) , ( 1 , 8 ) } \mathbf{R}_1 \circ \mathbf{R}_2 = \{(1, 5), (1, 8)\} R1R2={(1,5),(1,8)}
    R 1 + = ⋃ i = 1 ∣ A ∣ R i = { ( 1 , 2 ) , ( 2 , 9 ) , ( 1 , 9 ) } \mathbf{R}_1^+ = \bigcup_{i = 1}^{\vert{\mathbf{A}}\vert}R^i = \{(1, 2), (2, 9), (1, 9)\} R1+=i=1ARi={(1,2),(2,9),(1,9)}
    R 1 ∗ = R 1 + ∪ A 0 = { ( 1 , 2 ) , ( 2 , 9 ) , ( 1 , 9 ) , ( 1 , 1 ) , ( 2 , 2 ) , ( 5 , 5 ) , ( 8 , 8 ) , ( 9 , 9 ) } \mathbf{R}_1^* = \mathbf{R}_1^+\cup\mathbf{A}^0 = \{(1, 2), (2, 9), (1, 9), (1, 1), (2, 2), (5, 5), (8, 8), (9, 9)\} R1=R1+A0={(1,2),(2,9),(1,9),(1,1),(2,2),(5,5),(8,8),(9,9)}

  3. 查阅粗糙集上下近似的定义并大致描述.
    在这里插入图片描述
    转自粗糙集理论

下午:
举例说明你对函数的认识.
f f f是集合 A \mathbf{A} A B \mathbf{B} B的一个关系,如果对于每个 x ∈ A x\in \mathbf{A} xA,都存在唯一的 y ∈ B y \in \mathbf{B} yB,使得 ( x , y ) ∈ f (x,y) \in f (x,y)f,则关系 f f f称作集合 A \mathbf{A} A B \mathbf{B} B的函数或者映射,记为 f : A → B f: \mathbf{A} \to \mathbf{B} f:AB。函数是一种特殊的关系,可以进行关系的基本运算,但是,函数的交、差、并、补的结果不一定是函数

晚上:
自己给定一个矩阵并计算其各种范数.
矩阵 A = [ 1 6 8 5 − 6 3 ] \mathbf{A} = \left[\begin{matrix} 1 & 6 & 8 \\ 5 & -6 & 3\\ \end{matrix}\right] A=[156683]
l 0 l_0 l0范数 = ∣ ∣ A ∣ ∣ 0 = ∣ { ( i , j ) ∣ i , j ≠ 0 } ∣ = 6 ||\mathbf{A}||_0 = \vert\{(i,j) \vert_{i,j} \neq 0\} \vert= 6 A0={(i,j)i,j=0}=6
l 1 l_1 l1范数 = ∣ ∣ A ∣ ∣ 1 = ∑ i , j ∣ a i , j ∣ = 29 ||\mathbf{A}||_1 = \sum_{i,j}\vert a_{i,j} \vert= 29 A1=i,jai,j=29
l 2 l_2 l2范数 = ∣ ∣ A ∣ ∣ 2 = ∑ i , j ∣ a i , j ∣ 2 = 171 ||\mathbf{A}||_2 = \sqrt {\sum_{i,j}\vert a_{i,j} \vert^2}= \sqrt{171} A2=i,jai,j2 =171
l ∞ l_\infty l范数 = ∣ ∣ A ∣ ∣ ∞ = max ⁡ i , j ∣ a i j ∣ = 8 ||\mathbf{A}||_{\infty} = \max{i, j} \vert a_{ij} \vert = 8 A=maxi,jaij=8

解释推荐系统: 问题、算法与研究思路2.1 中的优化目标
min ⁡ ∑ ( i , j ) ∈ Ω ( f ( x i , t j ) − r i j ) 2 \min\sum_{(i, j)\in \Omega}(f(x_i, t_j) - r_{ij})^2 min(i,j)Ω(f(xi,tj)rij)2
解释:优化目标是要 min ⁡ \min min损失函数,此处的损失函数为平方差损失,输入为用户信息表 X \mathbf{X} X和商品信息表 T \mathbf{T} T,经过函数 f f f的映射后得到预测值 f ( x i , t j ) f(x_i, t_j) f(xi,tj),在减去用户评分 r i j r_{ij} rij,两者的差值做平方,然后在整个数据集上求和,最后通过优化算法找到最小值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值