Tsinsen A1320 Painting 【最大权匹配】【树形DP】

题目大意:给一棵 n 个点的树,给每条边染色为 ai(1<=ai<n) ,代价为 ai ,要求每一个点连出的边颜色不同,求最小代价及方案

考虑每棵子树对整体的影响只有它父边的颜色,可以树形DP
F[i][j] 表示以 i 点为根的子树,父边颜色为 j 的最小代价
但因为要求颜色不同,所以转移的过程是一个匹配问题
建图:左边是子节点,右边为颜色,权值为最小代价,即 F[l][r]
最坏复杂度为: O(N5)
但题目中有叙述树为随机生成,所以期望复杂度 O()

开始忘记清零 pre[S],死循环QAQ
后来记录方案的时候,边号又加错,YYY一眼看出来orz

代码辣么丑QAQ

#include<iostream>
#include<algorithm>
#include<cstring>
#include<string>
#include<cstdlib>
#include<cstdio>
#include<ctime>
#include<cmath>
#define mem(x,y) memset(x,y,sizeof(x))
#define N 155
#define M 120125
#define INF 1000000000
using namespace std;

int n,siz,S,T,ans=INF,t;
int fa[N],first[N*2],next[M],flow[M],cost[M],to[M],pre[M];
int f[N][N],map[N][N];
int dis[N*2],p[M],d[N],as[N],match[N][N][N];
bool v[N*2];

void inser(int x,int y,int w,int c)
{
    next[++siz]=first[x];
    first[x]=siz;
    to[siz]=y;
    flow[siz]=w;
    cost[siz]=c;
}

void add_edge(int x,int y,int w,int c)
{
    inser(x,y,w,c),inser(y,x,0,-c);
}

bool spfa()
{
    mem(dis,63),mem(v,0);
    int head=0,tail=1,x;
    dis[p[1]=S]=pre[S]=0;
    while (head^tail)
    {
        v[x=p[++head]]=false;
        for (int y,i=first[x];i;i=next[i])
            if (flow[i]&&dis[y=to[i]]>dis[x]+cost[i])
            {
                dis[y]=dis[x]+cost[pre[y]=i];
                if (!v[y]) v[p[++tail]=y]=true;
            }
    }
    return dis[0]^dis[T];
}

int mcmf()
{
    int ret=0;
    while (spfa())
    {
        int w=INF;
        for (int i=pre[T];i;i=pre[to[i^1]])
            w=min(w,flow[i]);
        for (int i=pre[T];i;i=pre[to[i^1]])
            flow[i]-=w,flow[i^1]+=w;
        ret+=w*dis[T];
    }
    return ret;
}

int cal(int x,int c)
{
    int tot=0;
    mem(first,0),siz=1,S=d[x]+n,T=S+1;
    for (int i=1;i<=n;i++)
        if (map[x][i]&&i!=fa[x])
        {
            add_edge(S,++tot,1,0);
            for (int j=1;j<n;j++)
                if (j^c) add_edge(tot,d[x]+j,1,f[i][j]);
        }
    for (int i=1;i<n;i++)
        if (i^c) add_edge(d[x]+i,T,1,0);
    int ret=mcmf()+c;siz=1;
    for (int i=1;i<=n;i++)
        if (map[x][i]&&i!=fa[x])
        {
            siz+=2;
            for (int j=1;j<n;siz+=(j!=c)*2,j++)
                if (j!=c&&!flow[siz+1]) match[x][c][i]=j;
        }
    return ret;
}

void dfs(int x)
{
    if (d[x]==1&&x!=1)
    {
        for (int i=1;i<n;i++) f[x][i]=i;
        return;
    }
    for (int i=1;i<=n;i++)
        if (map[x][i]&&i!=fa[x])
            fa[i]=x,dfs(i);
    if (x^1) for (int j=1;j<n;j++) f[x][j]=cal(x,j);
        else f[x][0]=cal(x,0);
}

void DFS(int x,int c)
{
    for (int i=1;i<=n;i++)
        if (match[x][c][i])
        {
            as[map[x][i]]=match[x][c][i];
            DFS(i,match[x][c][i]);
        }
}

int main()
{
    scanf("%d",&n);
    for (int x,y,i=1;i<n;i++)
    {
        scanf("%d%d",&x,&y);
        d[x]++,d[y]++;
        map[x][y]=map[y][x]=i;
    }
    dfs(1);
    DFS(1,0);
    printf("%d\n",f[1][0]);
    for (int i=1;i<n;i++) printf("%d ",as[i]);

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值