beginendzrq

辣鸡……

一个组合数证明

一位大爷提到的这个式子。。。 感觉自己非常蠢,想了很久。。。 可能组合数学需要重新学。。。求证 ∑m+1i=1(ni)(mi−1)=(n+mm+1)\sum_{i = 1}^{m+1} {n \choose i}{m \choose i-1} = {n+m \choose m+1}(1+x)n...

2017-04-28 00:07:34

阅读数:397

评论数:0

圆锥曲线基本性质(二)

椭圆/双曲线/抛物线 焦点弦端点在对应准线上投影与其交叉连线在对称轴的交点平分焦准连线椭圆/双曲线/抛物线 与圆有四个交点,则对应边的斜率互为相反数过Q(t,0)Q(t,0)的直线交 椭圆/双曲线 于ABAB,A′A'与AA关于对称轴对称,则A′BA'B过点P(a2t,0)P(\frac {a^2...

2017-04-26 02:44:55

阅读数:598

评论数:0

PE 318【二项式定理】

题目描述:求 ∑N(p,q)\sum N(p,q),N(p,q)N(p,q)表示使(p√+q√)2n(\sqrt p + \sqrt q)^{2n}的小数部分开头有至少连续2011个9的最小的n。其中 p<q,p+q<=2011p<q,p+q <= 2011先吃药……注意到...

2017-04-01 22:54:38

阅读数:270

评论数:0

圆锥曲线基本性质

圆以A(x1,y1)A(x_1,y_1),B(x2,y2)B(x_2,y_2)为直径两端点的圆(x−x1)(x−x2)+(y−y1)(y−y2)=0(x - x_1)(x - x_2) + (y - y_1)(y - y_2) = 0 过点P(x0,y0)P(x_0,y_0)的圆x2+

2017-04-01 21:08:12

阅读数:462

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭