序列变换
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4637 Accepted Submission(s): 1417
Problem Description
我们有一个数列A1,A2...An,你现在要求修改数量最少的元素,使得这个数列严格递增。其中无论是修改前还是修改后,每个元素都必须是整数。
请输出最少需要修改多少个元素。
请输出最少需要修改多少个元素。
Input
第一行输入一个T(1≤T≤10),表示有多少组数据
每一组数据:
第一行输入一个N(1≤N≤105),表示数列的长度
第二行输入N个数A1,A2,...,An。
每一个数列中的元素都是正整数而且不超过106。
每一组数据:
第一行输入一个N(1≤N≤105),表示数列的长度
第二行输入N个数A1,A2,...,An。
每一个数列中的元素都是正整数而且不超过106。
Output
对于每组数据,先输出一行
Case #i:
然后输出最少需要修改多少个元素。
Case #i:
然后输出最少需要修改多少个元素。
Sample Input
2 2 1 10 3 2 5 4
Sample Output
Case #1: 0 Case #2: 1
Source
/*
对于本道题目,我的想法是:
求出最长上升序列,记录长度
然后用总长度-最长上升序列的长度
后来我屁颠屁颠用 最长上升子序列 模板做了,结果....
TLE了 (真可怜,这就是闭上眼睛不算时间复杂度的后果)
本题的数据达到1e5, 所以要用 【最长上升子序列II】
假设所给的序列要想达到严格递增,
那么只需要用所给序列的长度减去里边严格递增的长度,
那么问题来了,1 2 2 3 (其中有个2被2和3前后夹击,修改的话,也没有空间)
这个要使用的话,就是 4 - 3 = 1 个
但是很显然不是 因为 两个二改成什么都不行,
必须把 最后一个3 也改变了.
说明了啥,板子还要再修改一下,因为本题要保证最终修改后的
结果要严格单调递增。
这时候就要对原序列动手脚了^.^
让上面描述的 1 2 2 3 中的两个2区分开来
根据单调递增的序列的一个性质:
a[i]-a[j]>=i-j -> a[i]-i >=a[j]-j;
*/
#include <bits/stdc++.h>
using namespace std;
const int N=1e5+10;
int a[N];
int f[N]; //存长度为i的序列的结尾最小值
int main()
{
int T;
scanf("%d",&T);
for(int t=1;t<=T;t++)
{
memset(a,0,sizeof a);
memset(f,0,sizeof f);
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
a[i]=a[i]-i;
}
int len=0;
//f[0]=-2e9;
memset(f,0x3f,sizeof f);
for(int i=1;i<=n;i++)
{
int posl=upper_bound(f+1,f+1+len,a[i])-f;
f[posl]=min(f[posl],a[i]);
len=max(len,posl);
}
printf("Case #%d:\n",t);
cout<<n-len<<endl;
}
return 0;
}