序列变换 【LIS二分版本】

序列变换

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4637    Accepted Submission(s): 1417


 

Problem Description
我们有一个数列A1,A2...An,你现在要求修改数量最少的元素,使得这个数列严格递增。其中无论是修改前还是修改后,每个元素都必须是整数。
请输出最少需要修改多少个元素。
 

Input
第一行输入一个T(1≤T≤10),表示有多少组数据

每一组数据:

第一行输入一个N(1≤N≤105),表示数列的长度

第二行输入N个数A1,A2,...,An。

每一个数列中的元素都是正整数而且不超过106。
 

Output
对于每组数据,先输出一行

Case #i:

然后输出最少需要修改多少个元素。
 

Sample Input
 
 
2 2 1 10 3 2 5 4
 

Sample Output
 
 
Case #1: 0 Case #2: 1
 

Source
 
/*
对于本道题目,我的想法是:
求出最长上升序列,记录长度
然后用总长度-最长上升序列的长度 

后来我屁颠屁颠用 最长上升子序列 模板做了,结果....
TLE了 (真可怜,这就是闭上眼睛不算时间复杂度的后果)

本题的数据达到1e5, 所以要用 【最长上升子序列II】

假设所给的序列要想达到严格递增,
那么只需要用所给序列的长度减去里边严格递增的长度,
那么问题来了,1 2 2 3   (其中有个2被2和3前后夹击,修改的话,也没有空间) 
这个要使用的话,就是 4 - 3 = 1 个  
但是很显然不是  因为 两个二改成什么都不行,
必须把 最后一个3  也改变了.

说明了啥,板子还要再修改一下,因为本题要保证最终修改后的
结果要严格单调递增。 

这时候就要对原序列动手脚了^.^
让上面描述的 1 2 2 3 中的两个2区分开来 
根据单调递增的序列的一个性质:
a[i]-a[j]>=i-j -> a[i]-i >=a[j]-j; 
*/

#include <bits/stdc++.h>
using namespace std;
const int N=1e5+10;
int a[N];
int f[N];   //存长度为i的序列的结尾最小值 
int main()
{
	int T;
    scanf("%d",&T);
	for(int t=1;t<=T;t++)
	{
		memset(a,0,sizeof a);
		memset(f,0,sizeof f);
		int n;
	    scanf("%d",&n);
		for(int i=1;i<=n;i++)
		{
			scanf("%d",&a[i]);
			a[i]=a[i]-i; 
		}
		
		int len=0;
		//f[0]=-2e9;
		memset(f,0x3f,sizeof f);
		for(int i=1;i<=n;i++)
		{
			int posl=upper_bound(f+1,f+1+len,a[i])-f;
			
			f[posl]=min(f[posl],a[i]);
			
			len=max(len,posl);
		}
	
		printf("Case #%d:\n",t);
		cout<<n-len<<endl;
	} 
	
	return 0;
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值