HDU 5587
题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=5587
题意:
有一个序列式这样形成的。初始有一个数组{1},然后复制这个数组并在数组前增加一个0得到数组{0,1}。然后新数组里每个元素加1,得到数组{1,2}。新数组与原数组拼接得到{1,1,2}.。。。。。以此类推得到一种形式的数组。
现在问这个数组里前M个数的和是多少。
思路:
Bestcoder的div2第三题,高中数学推出来DP公式,然后卡死在递推的常数上。
设数组变量len[i]表示第i此变换时数组中有多少元素,dp[i]表示第i此变换数组中元素和。则有递推式len[i] = len[i-1] * 2 + 1,dp[i] = dp[i - 1] * 2 + len[i - 1] + 1。
然后求前m个数的和。
找到小于等于m且最大的变换数组,加上它的DP值,然后向下递推。因为对于一个第n此变换得到的数组,它里面每一个以它开头的小段数组为源头复制得到的数组的头一个元素都想稍等{1}{1,2}{1,2,2,3} …. {{2}{2,3}{2,2,3}}这样。然后划分的时候先把头元素为1的数组段去掉,再把头元素为2的数组段去掉。。。。
然而传参数的写法容易写坏,学习可为同学写了下面的写法。
源码:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <string>
#include <algorithm>
#include <iostream>
using namespace std;
#define LL long long
const int MAXN = 100 + 5;
LL dp[MAXN], len[MAXN];
void init()
{
dp[1] = 1, len[1] = 1;
int cnt = 2;
while(cnt <= 64){
dp[cnt] = ((LL)1 << (cnt - 1)) * cnt;
len[cnt] = ((LL)1 << cnt) - 1;
cnt++;
}
}
LL solve(LL l, LL add)
{
// printf("l = %I64d, add = %I64d, num = %I64d\n", l, add, num);
if(l == 0) return 0;
if(l == 1) return add + dp[1];
int now = 1;
while(l > len[now + 1]) now++;
// printf("l = %I64d, add = %I64d, now = %d, len[now] = %I64d, dp[now] = %I64d, num = %I64d\n", l, add, now, len[now], dp[now], num);
// system("pause");
return dp[now] + 1 + solve(l - len[now] - 1, add) + l - len[now] - 1;
}
int main()
{
init();
int T;
while(scanf("%d", &T) != EOF){
while(T--){
LL m;
scanf("%I64d", &m);
LL ans = solve(m, 0);
printf("%I64d\n", ans);
}
}
return 0;
}