leetcode之N皇后(C++)

这篇博客介绍了如何利用回溯法解决经典的N皇后问题。通过逐行放置皇后并检查冲突,确保每一行、列及对角线上都不会有两个皇后,从而找到所有可能的解决方案。代码实现中定义了一个Solution类,包含solveNQueens方法和辅助的backtrack方法,以及isValid函数用于检查当前位置是否合法。博客探讨了回溯法在解决此类问题中的应用和效率。
摘要由CSDN通过智能技术生成

参考链接

  1. https://leetcode-cn.com/problems/n-queens/

题目描述

n皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。

给你一个整数 n ,返回所有不同的 n 皇后问题 的解决方案。

每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中 ‘Q’ 和 ‘.’ 分别代表了皇后和空位。
在这里插入图片描述

解题思路

显然是一个穷举问题,而且看提示n不超过9,说明复杂度很高,只能穷举,用回溯法可以解决。逐行确定皇后的位置,如此只需要判断皇后的上方,左上,右上三条线上是否有别的皇后,如果有就看下一列,没有就去下一行选位置。

代码

class Solution {
public:
    vector<vector<string>> res;
    vector<vector<string>> solveNQueens(int n) {
        vector<string> board(n, string(n, '.'));
        backtrack(board, 0);
        return res;
    }

    void backtrack(vector<string>& board, int row)
    {
        if (row == board.size())
        {
            res.push_back(board);
            return;
        }
        int n = board[row].size();
        for (int col = 0; col < n; col ++)
        {
            if (!isValid(board, row, col))
            {
                continue;
            }
            board[row][col] = 'Q';
            backtrack(board, row + 1);
            board[row][col] = '.';
        }
    }

    bool isValid(vector<string>& board, int row, int col)
    {
        int n = board.size();
        for (int i = 0; i < row; i ++)
        {
            if (board[i][col] == 'Q')
            {
                return false;
            }
        }
        for (int i = row - 1, j = col + 1; i >= 0 && j < n; i --, j ++)
        {
            if (board[i][j] == 'Q')
            {
                return false;
            }
        }
        for (int i = row - 1, j = col - 1; i >= 0 && j >= 0; i --, j --)
        {
            if (board[i][j] == 'Q')
            {
                return false;
            }
        }
        return true;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值