方格计数(蓝桥杯)

题目:如图p1.png所示,在二维平面上有无数个1x1的小方格。

我们以某个小方格的一个顶点为圆心画一个半径为1000的圆。 你能计算出这个圆里有多少个完整的小方格吗?

注意:需要提交的是一个整数,不要填写任何多余内容。

解题思路:

以第一象限为例,遍历第一象限位于圈内的所有方格的右上角顶点(因为对这些方格而言,其右上角是最容易出圈的,如果它的右上角在圈内,那么这个方格一定在圈内),若此点到原点的距离小于半径,则数目加一。最后数目乘以四得总数。 

至于为什么不用圆的半径除以小方格的对角线\sqrt{2},原因如下:

圆内所有完整的小方格不一定正好组成一个大的正方形。因为小方格的边长小于对角线,这也就意味着沿坐标轴方向的小方格数一定不少于沿45°对角线方向的小方格数。


​​​​​​​Python代码:

import math

count=0  # 计算第一象限中符合条件的方格个数
for i in range(1,1000+1):
    for j in range(1,1000+1):
        d=math.sqrt(i*i+j*j)
        if d<=1000:
            count+=1
print(count*4)

### 蓝桥杯方格问题解决方案 #### 一、问题描述 在蓝桥杯比赛中,“走方格”类题目通常涉及在一个二维网格上移动,从起点到终点的不同路径数量计算。这类问题可以通过动态规划方法高效求解。 #### 二、算法设计 对于此类问题的一个常见策略是采用自底向上的动态规划方式来构建解答表。假设有一个m*n大小的地图,则创建同样尺寸的状态转移矩阵dp[][]用于记录到达每一个位置(i, j)时可能存在的不同路线数目[^1]。 初始化边界条件:当i=0或j=0时(即沿着最上面一行或者左边第一列),只存在一条直线前进的方式可以抵达这些节点;因此设置`dp[i][0]=1`以及`dp[0][j]=1`作为初始状态值。 核心递推关系表达如下: \[ dp[i][j] = dp[i-1][j]+dp[i][j-1], \quad (1\leq i<m,\;1\leq j<n)\] 该公式表示当前位置可以从上方单元格向下走一步来到达,也可以由左侧相邻单元格右移一位进入。最终目标是要获得位于地图右下角处的目标点(dp[m-1][n-1])所对应的总路径计数值。 #### 三、Python代码实现 下面给出一段具体的Python程序用来展示如何利用上述原理解决问题: ```python def uniquePaths(m: int, n: int) -> int: # 创建并初始化DP表格 dp = [[1]*n for _ in range(m)] for row in range(1,m): for col in range(1,n): dp[row][col] = dp[row-1] if __name__ == "__main__": m = 7 # 行数 n = 3 # 列数 result = uniquePaths(m, n) print(f"From top-left corner to bottom-right one has {result} ways.") ``` 此段脚本定义了一个名为uniquePaths()的功能函数接收两个参数分别代表矩形区域的高度和宽度,并返回两者间所有可行路径的数量。通过调用这个功能测试实例验证其正确性。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值