
图
文章平均质量分 94
chencjiajy
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
图社区发现算法--Leiden算法
Leiden算法出自2019年的论文《From Louvain to Leiden: guaranteeing well-connected communities》,它是Louvain算法的改进社区发现算法,相比Louvain得到的社区质量更高,因为其移动策略速度也更快。Leiden算法也是以论文作者所在城市来命名的。原创 2024-12-09 20:02:36 · 4892 阅读 · 0 评论 -
图算法-PageRank
图算法PageRank简介原创 2024-12-05 20:28:46 · 1090 阅读 · 0 评论 -
图社区发现算法-Louvain算法
Louvain社区发现算法出自2008年的论文《Fast unfolding of communities in large networks》,其名字是根据作者所在的城市来命名的。它基于模块度优化来实现社区划分,分两阶段来进行社区发现。原创 2024-12-04 20:54:26 · 3140 阅读 · 0 评论 -
基于的图的异常检测算法OddBall
OddBall异常检测算法出自2010年的论文《OddBall: Spotting Anomalies in Weighted Graphs》,它是一个在加权图(weighted graph)上检测异常点的算法,基本思路为计算每一个点的一度邻域特征,然后在整个图上用这些特征拟合出一个函数,再根据拟合出来的参数计算每个点的异常分数,所以它可以用于无监督场景。原创 2024-11-16 16:23:58 · 1659 阅读 · 1 评论 -
图神经网络pytorch_geometric库之MessagePassing类
MessagePassing是图神经网络Python库pytorch_geometric(PyG)库里非常重要的一个基类,它可以用来创建消息传递图神经网络,pytorch_geometric里很多类比如图卷积层GCNConv和图注意力层GATConv都基于此类实现,我们也可以基于它来自定义图神经网络。原创 2024-06-14 21:24:22 · 1435 阅读 · 0 评论 -
图表征模型GraphSAGE 笔记
GraphSAGE相比之前的模型最主要的一个特点是它可以给从未见过的图节点生成图嵌入向量。那它是如何实现的呢?它是通过在训练的时候利用节点本身的特征和图的结构信息来学习一个嵌入函数(当然没有节点特征的图一样适用),而没有采用之前常见的为每个节点直接学习一个嵌入向量的做法。它的嵌入函数准确来说是一个可以从节点的邻域节点聚合它们的特征信息的函数,并为训练这个函数设计了一个无监督的损失函数原创 2023-03-25 17:15:04 · 850 阅读 · 0 评论 -
《Graph Attention Networks》笔记
图注意力网络 (GATs)利用掩码自注意力机制(masked self-attentional layers)来克服之前的图卷积神经网络及其近似模型的缺点。通过堆叠让其节点能够关注其邻域特征的网络层,能够(隐式地)给邻域中不同的节点赋予不同的权重,而不需要任何类型的昂贵矩阵操作(比如求逆)或依赖预先知道的图结构。原创 2023-03-13 23:12:01 · 656 阅读 · 0 评论 -
图嵌入node2vec总结
node2vecnode2vec 在DeepWalk 的基础上引入了网络的同质性(homophily)和结构性(structural equivalence)的概念。同质性指节点同属于某一个社区,在下图中u和s1同属于一个社区。 结构性指节点的结构角色类似,如下图中s6与u虽然属于两个不同的社区,但是他们都属于中心节点,结构类似。 ...原创 2019-07-29 22:18:42 · 1225 阅读 · 0 评论