人工智能数学核心理论34讲精华视频免费领(微积分、概率论与数理统计、线性代数三部曲)

本文介绍了人工智能学习中不可或缺的数学基础,包括线性代数、概率论和数理统计。线性代数提供了一种抽象看待世界的视角,概率论描述统计规律,数理统计则用于推断未知分布的随机变量。通过学习这些数学理论,可以更好地理解和应用人工智能技术。此外,还提到了免费的人工智能数学精华视频课程资源。
摘要由CSDN通过智能技术生成

从事AI行业最重要的知识莫过于数学了,或者说对于计算机领域乃至工科领域都是很重要的。

对于大多数的新手来说,如何入手人工智能其实都是一头雾水,比如到底需要哪些数学基础、是否要有工程经验、对于深度学习框架应该关注什么等等。

那么,学习人工智能该从哪里开始呢?人工智能的学习路径又是怎样的?

数学基础知识蕴含着处理智能问题的基本思想与方法,也是理解复杂算法的必备要素。今天的种种人工智能技术归根到底都建立在数学模型之上,要了解人工智能,首先要掌握必备的数学基础知识,具体来说包括:

线性代数:如何将研究对象形式化?

概率论:如何描述统计规律?

数理统计:如何以小见大?

线性代数必备知识

事实上,线性代数不仅仅是人工智能的基础,更是现代数学和以现代数学作为主要分析方法的众多学科的基础。从量子力学到图像处理都离不开向量和矩阵的使用。而在向量和矩阵背后,线性代数的核心意义在于提供了⼀种看待世界的抽象视角:万事万物都可以被抽象成某些特征的组合,并在由预置规则定义的框架之下以静态和动态的方式加以观察。

着重于抽象概念的解释而非具体的数学公式来看,线性代数要点如下:线性代数的本质在于将具体事物抽象为数学对象,并描述其静态和动态的特性;向量的实质是 n 维线性空间中的静止点;线性变换描述了向量或者作为参考系的坐标系的变化,可以用矩阵表示;矩阵的特征值和特征向量描述了变化的速度与方向。

总之,线性代数之于人工智能如同加法之于高等数学,是一个基础的工具集。

概率论:如何描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值