概率论基础
- 概率论与数理统计是研究什么的?
- 随机现象:不确定性与统计规律性
- 概率论:从数量上研究随机现象的统计规律性的科学
- 数理统计:从应用角度研究处理随机性数据,建立有效的统计方法,进行统计推理
条件概率
- 加法公式:若事件A与B互斥,则
P ( A ⋃ B ) = P ( A ) + P ( B ) P(A\bigcup B) = P(A) + P(B) P(A⋃B)=P(A)+P(B)
1. 事件A与B至少有一个发生的事件叫做A与B的和事件,记为 A ⋃ B 或 A + B A\bigcup B或A + B A⋃B或A+B
2. 事件A与B都发生的事件叫做A与B的积事件,记为 A ⋂ B 或 A B A\bigcap B或AB A⋂B或AB - 对于事件空间
Ω
\Omega
Ω,事件A和B的加法公式是:
P ( A ⋃ B ) = P ( A ) + P ( B ) − P ( A ⋂ B ) P(A\bigcup B) = P(A) + P(B) - P(A\bigcap B) P(A⋃B)=P(A)+P(B)−P(A⋂B)
若A、B事件相互独立,那么: P ( A ⋂ B ) = 0 P(A\bigcap B) = 0 P(A⋂B)=0
排列组合
- 组合:从n个元素中取m个元素组成一组(不考虑其顺序)的组合方式个数,记
C n m , 其 中 m ≤ n 。 C n m = A n m A m m = n ! m ! ( n − m ) ! , 其 中 C n 0 = 1 C{^m_n},其中 m\le n。C{^m_n} = \frac{A{^m_n}}{A{^m_m}} = \frac{n!}{m!(n - m)!},其中 C{^0_n} = 1 Cnm,其中m≤n。Cnm=AmmAnm=m!(n−m)!n!,其中Cn0=1 - 排列数:从n个元素中抽取m个元素的所有不同的排列个数。记作 A n m 。 其 中 m ≤ n 。 A n m = n ( n − 1 ) ⋯ ( n − m + 1 ) A{^m_n}。其中 m \leq n。 A{^m_n} = n(n-1)\cdots(n-m+1) Anm。其中m≤n。Anm=n(n−1)⋯(n−m+1)
全概率公式
- 当求某一事件A的概率比较困难,而求条件概率比较容易时,可先设法将这个事件A分成几个互不相容的和,再利用加法公式和乘法公式解之。
样本设 B 1 , B 2 ⋯ B n , 为 一 列 互 不 相 容 的 事 件 , 且 ⋃ i = 1 n B i = Ω B_1,B_2\cdots B_n,为一列互不相容的事件,且 \bigcup_{i=1}^{n}B_i = \Omega B1,B2⋯Bn,为一列互不相容的事件,且i=1⋃nBi=Ω,则对任一事件A,有
P ( A ) = P ( B 1 ) P ( A ∣ B 1 ) + P ( B 2 ) P ( A ∣ B 2 ) + ⋯ + P ( B n ) P ( A ∣ B n ) = ∑ i = 1 n P ( B i ) P ( A ∣ B i ) P(A) = P(B_1)P(A|B_1) + P(B_2)P(A|B_2) + \cdots + P(B_n)P(A|B_n) = \sum_{i=1}^nP(B_i)P(A|B_i) P(A)=P(B1)P(A∣B1)+P(B2)P(A∣B2)+⋯+P(Bn)P(A∣Bn)=i=1∑nP(Bi)P(A∣Bi)
参考全概率 中间关于全概率公式的例子部分。 - 注意:参考连接链接例子的三条路不拥堵的概率是指各自的概率,是相对独立的
贝叶斯法则
- 通常,事件A在事件B(发生)的条件下的概率,与事件B在事件A的条件下的概率是不一样的;然而,这两者是有确定关系,贝叶斯法则就是这种关系的陈述。
定义1:
- 若
A
1
,
A
2
,
⋯
A
n
构
成
一
个
完
备
事
组
,
且
P
(
A
i
)
>
0
,
i
=
1
,
2
,
⋯
n
A_1, A_2,\cdots A_n 构成一个完备事组,且P(A_i) > 0,i =1, 2, \cdots n
A1,A2,⋯An构成一个完备事组,且P(Ai)>0,i=1,2,⋯n
则 对 于 任 何 事 件 , 有 P ( A i ∣ B ) = P ( A i ) P ( B ∣ A i ) ∑ j = 1 n P ( A j ) P ( B ∣ A j ) , i = 1 , 2 , ⋯ n 则对于任何事件,有P(A_i|B) = \frac{P(A_i)P(B|A_i)}{\sum_{j=1}^nP(A_j)P(B|A_j)},i=1, 2, \cdots n 则对于任何事件,有P(Ai∣B)=∑j=1nP(Aj)P(B∣Aj)P(Ai)P(B∣Ai),i=1,2,⋯n
设自然状态 θ 有 k 种 \theta有k种 θ有k种, θ 1 , θ 2 , ⋯   , θ k \theta_1, \theta_2, \cdots ,\theta_k θ1,θ2,⋯,θk
- 全概率公式: P ( x ) = ∑ i = 1 n P ( x ∣ θ i ) P ( θ i ) P(x) = \sum_{i=1}^nP(x|\theta _i)P(\theta_i) P(x)=i=1∑nP(x∣θi)P(θi)
- Bayes公式(后验公式): P ( θ i ∣ x ) = P ( x ∣ θ i ) P ( θ i ) ∑ i = 1 n P ( x ∣ θ i ) P ( θ i ) P(\theta _i|x) =\frac{P(x|\theta_i)P(\theta_i)} {\sum_{i=1}^nP(x|\theta _i)P(\theta_i)} P(θi∣x)=∑i=1nP(x∣θi)P(θi)P(x∣θi)P(θi)
注:
- 把事件 θ i , x \theta_i, x θi,x看为随机变量,上公式则为Bayes后验分布
- P ( θ i ) P(\theta_i) P(θi):自然状态 θ i \theta_i θi发生的先验概率分布;
- P ( x ∣ θ i ) P(x|\theta_i) P(x∣θi):自然状态 θ i \theta_i θi条件下事件为x的概率;
- P ( θ i ∣ x ) P(\theta_i|x) P(θi∣x): θ i \theta_i θi发生的后验概率;
- 全概率公式: P ( x ) 为 x P(x)为x P(x)为x在各种状态下可能出现的概率的综合值。
贝叶斯意义
贝叶斯定理的意义在于,能在出现一个新的补
充事件条件下,重新修正对原有事件概率的估
计。即计算出后验概率分布。
在提供了新的补充信息条件下,这一修正的概
率比没有补充信息条件下的概率估计更为准确。
例子如下图:
可以看到通过两次贝叶斯公式(后验公式)计算,结果正确率大大提高