自行计算 OBV (On-Balance Volume,净额成交量或叫能量潮指标)
用于检验 talib.OBV(df.close, df.volume) 的正确性。
stock_obv.py
# -*- coding: utf-8 -*-
import os, sys
import tushare as ts
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
if len(sys.argv) ==2:
code = sys.argv[1]
else:
print('usage: python stock_obv.py stockcode ')
sys.exit(1)
if len(code) !=6:
print('stock code length: 6')
sys.exit(2)
df = ts.get_k_data(code)
if df.empty ==True:
print(" df is empty ")
sys.exit(2)
df = df[ df.date > '2019-01-01']
if len(df) <10:
print(" len(df) <10 ")
sys.exit(2)
# 收盘价
close = np.array(df.close)
# 成交量
vol = np.array(df.volume)
# 为了判断计算中成交量前的正负号,我们先使用diff函数计算收盘价的变化量。
# diff函数可以计算数组中两个连续元素的差值,并返回一个由这些差值组成的数组:
change = np.diff(close)
#print(change)
# 使用sign函数可以返回数组中每个元素的正负符号,数组元素为负时返回-1,
# 为正时返回1,否则返回0。
signs = np.sign(change)
#print(signs)
# 我们也可以使用piecewise函数来获取数组元素的正负。
# piecewise 函数可以分段给定取值。使用合适的返回值和对应的条件调用该函数:
pieces = np.piecewise(change, [change <0, change >0], [-1, 1])
#print(pieces)
print("Array equal?", np.array_equal(signs, pieces))
# OBV值的计算依赖于前一日的收盘价
vols = np.concatenate(([vol[0]], vol[1:] * signs )) # np 拼接
#print(vols[-5:])
# 求OBV值 := 计算累加之和
obv = np.cumsum(vols)
#print(type(obv))
print(obv[-5:])
df2 = pd.DataFrame(columns=['OBV'], data=obv)
df.index = pd.to_datetime(df.date)
# 画股票收盘价图
fig,axes = plt.subplots(2,1)
df[['close']].plot(ax=axes[0], grid=True, title=code)
# 画 OBV 曲线图
df2.plot(ax=axes[1], grid=True)
plt.show()
运行 python stock_obv.py 600030