#include <cstring>
#include <iostream>
#include <string>
#include <vector>
using namespace std;
int getdigit(void)
{
int digit{0}, symbol{1};
bool isp{true};
while (1)
{
char ch = getchar();
if (ch == ' ' || ch == '\n' || ch == EOF || ch == '\t')
{
if (isp)
continue;
return digit * symbol;
}
isp = false;
if (ch == '-')
symbol = -1;
else
digit = digit * 10 + ch - '0';
}
}
void putdigit(int digit)
{
if (digit < 0)
{
putchar('-');
putdigit(-digit);
}
if (digit >= 10)
putdigit(digit / 10);
putchar(digit % 10 + '0');
}
char getch(void)
{
char ch;
while ((ch = getchar()) == '\n')
;
return ch;
}
int ancestor(int *array, int member)
{
if (array[member] < 0)
return member;
array[member] = ancestor(array, array[member]);
return array[member];
}
void Link(int *array, int a, int b)
{
a = ancestor(array, a);
b = ancestor(array, b);
if (a != b)
{
/*按集合大小合并*/
// if (array[a] <= array[b])
// {
// array[a] += array[b];
// array[b] = a;
// }
// else
// {
// array[b] += array[a];
// array[a] = b;
// }
/*按树高合并*/
if (array[a] < array[b])
array[b] = a;
else if (array[a] > array[b])
array[a] = b;
else
{
array[b] = a;
array[a]--;
}
}
}
void Check(int *array, int a, int b)
{
if (ancestor(array, a) == ancestor(array, b))
puts("yes");
else
puts("no");
}
int main(int argc, char *argv[])
{
int n(getdigit());
int *array = static_cast<int *>(malloc(sizeof(int) * (n + 1)));
memset(array, -1, sizeof(int) * (n + 1));
while (1)
{
char ch = getch();
if (ch == 'S')
break;
int a{getdigit()}, b{getdigit()};
switch (ch)
{
case 'C':
Check(array, a, b);
break;
case 'I':
Link(array, a, b);
break;
}
}
int sum{0};
for (auto i = 1; i <= n; ++i)
if (array[i] < 0)
sum++;
if (sum != 1)
printf("There are %d components.\n", sum);
else
printf("The network is connected.\n");
free(array);
return EXIT_SUCCESS;
}
并查集题目。两种常用的并查集优化方式;
1.按(集合大小/树高)合并,两种实际效果差不太多。
集合大小:
/*按集合大小合并*/
if (array[a] <= array[b])
{
array[a] += array[b];
array[b] = a;
}
else
{
array[b] += array[a];
array[a] = b;
}
树高:
/*按树高合并*/
if (array[a] < array[b])
array[b] = a;
else if (array[a] > array[b])
array[a] = b;
else
{
array[b] = a;
array[a]--;
}
2.路径压缩,连续查找最深节点时很有效。
一般采用方式 1 就可以了,如有必要可以方式1+方式2配合一起优化,超大规模数据下才能看出差距。