人工智能:用人工的方法在机器(计算机)上实现的智能;或者说是人们使机器具有类似于人的智能。
人工智能学科:人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门技术科学。
在我们身边其实有很多很多的人工智能,比如:
而人工智能技术架构可分为如下:
我们今天主要来理解机器学习,下图是一个典型的机器学习的训练过程
1. 从一个随机初始化参数的模型开始,这个模型基本没有“智能”;
2. 获取一些数据样本(例如,音频片段以及对应的是或否标签);
3. 调整参数,使模型在这些样本中表现得更好;
4. 重复第(2)步和第(3)步,直到模型在任务中的表现令⼈满意。
然而,无论我们选择什么类型的机器学习,都会遇到这些组件:
1. 可以用来学习的数据(data);
2. 如何转换数据的模型(model);
3. ⼀个目标函数(objective function),用来量化模型的有效性;
4. 调整模型参数以优化目标函数的算法(algorithm)
数据
每个数据集由一个个样本组成,大多时候,它们遵循独立同分布。样本有时也叫做数据点或者数据实例,通常每个样本由一组称为特征(features,或协变量(covariates))的属性组成。
当处理图像数据时,每一张单独的照片即为一个样本,它的特征由每个像素数值的有序列表示。
拥有越多数据的时候,工作就越容易。更多的数据可以被用来训练出更强大的模型,从而减少对预先设想假设的依赖。仅仅拥有海量的数据是不够的,还需要正确的数据。
模型
任一调整参数后的程序被称为模型。
这些模型由神经⽹络错综复杂的交织在一起,包含层层数据转换,因此被称为深度学习。
目标函数
“学习”,是指自主提高模型完成某些任务的效能。
什么才算真正的提高呢?在机器学习中,我们需要定义模型的优劣程度的度量,这个度量在大多数情况是“可优化”的,这被称之为目标函数。
定义一个目标函数,并优化它到最小值——损失函数。
预测数值任务——平方误差:预测值与实际值之差的平方。
预测分类任务——最⼩化错误率:预测与实际情况不符的样本⽐例。
损失函数是根据模型参数定义的,并取决于数据集。在一个数据集上,我们可以通过最⼩化总损失来学习模型参数的最佳值。
优化算法
当我们获得了一些数据源及其表示、一个模型和一个合适的损失函数,接下来就需要一种算法,它能够搜索出最佳参数,以最⼩化损失函数。深度学习中,大多流行的优化算法通常基于一种基本方法——梯度下降(gradient descent)
在每个步骤中,梯度下降法都会检查每个参数,看看如果仅对该参数进行少量变动,训练集损失会朝哪个方向移动。然后,它在可以减少损失的方向上优化参数。
机器学习(machine learning,ML)是一类强大的可以从经验中学习的技术。通常采用观测数据或与环境交互的形式,机器学习算法会积累更多的经验,其性能也会逐步提高。
监督学习(supervised learning)擅⻓在“给定输⼊特征”的情况下预测标签。每个“特征-标签”对都称为一个样本(example)。我们的目标是生成一个模型,能够将任何输⼊特征映射到标签(即预测)。
监督学习的过程:
回归——平方误差损失函数
回归(regression)是最简单的监督学习任务之一。——房价预测
分类--交叉熵
样本属于“哪一类”的问题称为分类问题。分类问题希望模型能够预测样本属于哪个类别。


回归是训练一个回归函数来输出一个数值;分类是训练一个分类器来输出预测的类别。
标注问题
学习预测不相互排斥的类别的问题称为多标签分类(multi-label classification)
一个样本(一个图片或者一个候选框)中含有多个物体,标注的label也是多个的,多个类间并不是互斥的,多选多
比如:多目标检测、短视频分类
推荐系统
⽬标是向特定用户进行“个性化”推荐。例如,对于电影推荐,科幻迷和喜剧爱好者的推荐结果页面可能会有很大不同。
与环境互动
有⼈一直心存疑虑:机器学习的输⼊(数据)来自哪里?机器学习的输出又将去往何方?到目前为止,不管是监督学习还是无监督学习,我们都会预先获取大量数据,然后启动模型,不再与环境交互。这⾥所有学习都是在算法与环境断开后进行的,被称为离线学习(offline learning)。
优点是,我们可以孤⽴地进行模式识别,而不必分心于其他问题。
缺点是,解决的问题相当有限。
强化学习
智能体在一系列的时间步骤上与环境交互。在每个特定时间点,智能体从环境接收一些观察,并且必须选择一个动作,然后通过某种机制(有时称为执行器)将其传输回环境,最后智能体从环境中获得奖励。此后新一轮循环开始,智能体接收后续观察,并选择后续操作,依此类推。
深度学习
深度学习的发展
21世纪带来了高速互联网,智能手机摄像头、视频游戏等照片共享网站。数据池正在被填满。
廉价又高质量的传感器、廉价的数据存储以及廉价计算的普及,特别是GPU的普及,使大规模的算力唾手可得。
深度学习的应用场景有很多,比如:图像分类、目标检测和分割、人脸合成、机器翻译、图像描述、自然语言文本合成。
这里就不得不提到一个人工智能的经典测试
人工智能的先驱:艾伦·麦席森·图灵
英国数学家、逻辑学家、计算机科学之父、人工智能之父
“一个人在不接触对方的情况下,通过一种特殊的方式,和对方进行一系列的问答。如果在相当长时间内,他无法根据这些问题判断对方是人还是计算机,那么就可以认为这个计算机是智能的”。
这就是图灵测试
测试者与被测试者(一个人和一台机器)隔开的情况下,通过一些装置(如键盘)向被测试者随意提问。
进行多次测试后,如果机器让平均每个参与者做出超过30%的误判,那么这台机器就通过了测试,并被认为具有人类智能。