自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(15)
  • 资源 (1)
  • 收藏
  • 关注

原创 长沙二手房数据在网页前端的可视化分析

这里我结合百姓习惯房屋一般都是南北朝向,故把西北、东北都归为了朝北,同理西南和东南都归为朝南。(算是模糊定义一下吧)在房屋朝向部分这里jieba的读取其实也存在bug,文本中带有“东”就算朝东,带“北”就算朝北。但在实际运行中“东北”朝向的房屋jieba不能准确识别。以下是部分运行结果(共九个html文件,在浏览器打开)

2024-03-21 17:01:19 398 3

原创 深度学习基于MINST数据集的数字识别(自下载数据集)

torchvision.datasets是Pytorch自带的一个数据库,我们可以通过代码在线下载数据,这里使用torchvision.datasets中的MNIST数据集。torch.utils.data.DataLoader是Pytorch自带的一个数据加载器,结合了数据集和取样器,并且可以提供多个线程处理数据集。squeeze()函数的功能是从矩阵shape中,去掉维度为1的。例如一个矩阵是的shape是(5, 1),使用过这个函数后,结果为(5, )。

2024-03-21 16:46:25 503 1

原创 深度学习-彩色图片识别(自下载官方数据集)

【代码】深度学习-彩色图片识别(自下载官方数据集)

2024-03-21 16:37:51 216 1

原创 基于VGG-16网络框架的好莱坞明星识别(源码、数据集以及运行结果)

如果设备上支持GPU就使用GPU,否则使用CPU。

2024-03-21 16:24:13 657 1

原创 机器学习多算法实现对泰坦尼克号幸存者预测(源码及运行结果)

【代码】机器学习多算法实现对泰坦尼克号幸存者预测(源码及运行结果)

2024-03-20 20:26:30 777

原创 YOLOv4概述

总体而言,YOLO_v4其实就是“超级缝合怪”,集百家之所长。同时还通过数据增强的方式来通过小batch_size来获得高MAP,并且巧用CSP和PAN模块来减少计算量,使得这个融合怪也能在单GPU上快速的训练、运行,获得高效的检测结果。

2023-11-20 17:26:11 79 1

原创 YOLOv3概述

yolo算法是一种one-stage的目标检测算法,与two-stage目标检测算法最大区别在于运算速度上,YOLO系列算法将图片划分成若干个网格,再基于anchor机制生成先验框,只用一步就生成检测框,这种方法大大提升了算法的预测速度,今天我们主要学习的是YOLOv3算法的主要实现过程,YOLOv3的论文于2018年发表在CVPR上.

2023-11-20 14:27:28 105 1

原创 YOLOv1和YOLOv2概述

YOLOv1是单阶段方法,不需要像Faster RCNN这种两阶段目标检测方法一样,需要生成先验框。Yolo算法采用一个单独的CNN模型实现end-to-end的目标检测。整个YOLO目标检测pipeline如上图所示:首先将输入图片resize到448x448,然后送入CNN网络,最后处理网络预测结果得到检测的目标。相比R-CNN系列算法,其是一个统一的框架,其速度更快,而且Yolo的训练过程也是end-to-end的。

2023-11-16 19:18:59 126 1

原创 深度学习-目标检测

目标检测(Object Dectection)的任务是找出图像中所有感兴趣的目标(物体),确定他们的类别和位置,通俗的来说就是:识别图片中有哪些物体并且找到物体的存在位置。而在实际操作中,我们主要的问题如下:多任务:位置+类别目标种类与数量繁多的问题目标尺度不均的问题遮挡、噪声等外部环境的干扰。

2023-11-16 19:06:41 182 1

原创 卷积神经网络总结

在理解卷积神经网络之前,我们先理解什么是神经网络由大量的神经元相互连接而成。每个神经元接受线性组合的输入后,最开始只是简单的线性加权,后来给每个神经元加上了非线性的激活函数,从而进行非线性变换后输出。每两个神经元之间的连接代表加权值,称之为权重(weight)。不同的权重和激活函数,则会导致神经网络不同的输出。举个手写识别的例子,给定一个未知数字,让神经网络识别是什么数字。此时的神经网络的输入由一组被输入图像的像素所激活的输入神经元所定义。

2023-11-09 19:41:44 53 1

原创 多层感知机总结

多层感知机使用隐藏层和激活函数来得到非线性模型常用激活函数是SigmoidTanhRELU使用Softmax来处理多分类超参数为隐藏层数和各个隐藏层大小当然,不仅限于多层感知机(Multilayer Perceptron,MLP)或深度神经网络。神经网络包括多层感知机在内,都十分依赖如下条件:1.学习过程神经网络在外界输入样本的刺激下不断改变网络的连接权值乃至拓扑结构,以使网络的输出不断地接近期望的输出。学习的本质:对可变权值的动态调整。2.

2023-11-08 23:44:14 210 1

原创 人工智能简单总结

在每个特定时间点,智能体从环境接收一些观察,并且必须选择一个动作,然后通过某种机制(有时称为执行器)将其传输回环境,最后智能体从环境中获得奖励。仅仅拥有海量的数据是不够的,还需要正确的数据。什么才算真正的提高呢?在机器学习中,我们需要定义模型的优劣程度的度量,这个度量在大多数情况是“可优化”的,这被称之为目标函数。一个样本(一个图片或者一个候选框)中含有多个物体,标注的label也是多个的,多个类间并不是互斥的,多选多。当处理图像数据时,每一张单独的照片即为一个样本,它的特征由每个像素数值的有序列表示。

2023-11-08 14:50:21 91

原创 机器学习部分算法总结

它是为数不多的基于概率论的分类算法。对于大多数的分类算法,在所有的机器学习分类算法中,朴素贝叶斯和其他绝大多数的分类算法都不同。比如决策树,KNN,逻辑回归,支持向量机等,他们都是判别方法,也就是直接学习出特征输出Y和特征X之间的关系,要么是决策函数,要么是条件分布。K-means算法通过预先设定的K值及每个类别的初始质心对相似的数据点进行划分,并通过划分后的均值迭代优化获得最优的聚类结果。K-Means 是一种简单而有效的聚类算法,但在使用时需要注意选择合适的簇数和初始化方法,并考虑数据的特性。

2023-11-01 16:17:02 97 1

原创 TypeError: the JSON object must be str, bytes or bytearray, not dict //截取字符串中有反斜杠json无法识别进而无法读取数据

TypeError: the JSON object must be str, bytes or bytearray, not dict //截取字符串中有反斜杠json无法识别进而无法读取数据

2022-06-19 12:14:32 811 1

原创 笔记本主板静电积压 进而导致电脑外接显示器无信号 (不拆机处理主板静电问题)

笔记本主板静电积压 进而导致电脑外接显示器无信号 (不拆机除主板静电)

2022-03-23 21:27:42 9243 9

长沙二手房2023年九月爬取数据表

长沙二手房2023年九月爬取数据表

2024-09-14

基于深度学习(YOLO-v5)的数字识别系统-谷歌Street-View-House-Numbers数据集

全套项目 已训练好权重 需自行调配运行环境 支持图片、视频、摄像头多位数实时识别 例如:(门牌号、车牌数字、公路标识、仪器仪表数字、验证码等等) 不经常上线 有问题看到了必回复 论文、毕设、答辩指导额外私信

2024-04-28

elabsim-信号与系统课程-实验报告

elabsim-信号与系统课程-实验报告 (常用信号分类及观察、阶跃响应与冲激响应、有源无源滤波器、抽样定理与信号恢复、信号卷积实验、信号分解及合成) 包括实验过程 实验数据 原理分析 个人总结 供大家学习参考用~~ 制作不易 希望对大家有帮助~~

2022-06-20

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除