关于朗格朗日乘子

   看了"Some Notes on Applied Mathmatics for Machine Learning"中关于拉格朗日的部分,把其中比较重要的部分记在这里

   拉格朗日乘子发主要用于解决受限优化问题(constrained optimization),而限制常用C来表示,如Ci(x) = 0;下面分一等式限制,多等式限制,不等式限制介绍拉格朗日,最后给出几个朗格朗日的例子

  1.    1等式限制

1等式限制时,假设目标为:minf(x); C(x) = 0; 问题的解的条件是 f 的梯度和 C(x) = 0 的梯度平行,即,其中lamda是拉格朗日乘子,在一些问题中,lamda的值并不被计算,所以也叫不确定拉个朗日乘子。关于< f 的梯度和 C(x) = 0 的梯度平行>的几何意义可以看下面这个图

  

2 多等式限制 

   多等式限制时,问题的解的条件是 f 的梯度的任一唯的分量都不能与 任意一个限制垂直, 否则 x 的这个分量可以在这个限制的方向或相反的方向移动一点,使 f 的值变化,也就是说向量 f 的梯度要在限制的梯度组成的向量空间里,即另外,我们还要求问题的解在限制平面上,即满足所有的限制,所以,在解的位置,上式关于lamda和x的梯度都为零。

3 不等式限制

   不等式即C(x) 《=0,在解的位置,若限制时激活状态,那么C(x) = 0,接的条件和等式限制一样。我们可以把拉格朗日公式写作: L = f + lamda*c; 因为我们要最小化f,所以lamda>=0;因为两个梯度要指向相反的方向,所以在不等式限制下,lamda的符号是重要的。如果限制不在激活状态,那么解变成了nabla f = 0, 同时nabla C != 0, 此时lamda = 0, 因为nabla L=0;所以在以上两种情况下都有lamda*C = 0;这个等式便是重要的KKT条件(Krash-Kuhn-Trucker)之一。

  同样,对于不等式限制,我们要求f的梯度在限制的梯度组成的向量空间中,若朗格朗日写作 L = f + sigma(lamdai * Ci),  则要求lamdai >= 0;对于不活跃的限制,令lamdai = 0。最后一个简单且有用的技巧是忽略一个活多个限制解决问题,再验证问题的解是否满足被忽略的条件,若满足,则此解为最终解,可以叫做“free constraint gambit”。

  文章然后举了几个应用例子,这里也简单的提一下

  (1)代价收益曲线,来源于信道编码的例子。在固定收益和的情况下,寻找每个曲线代价, 解的条件是每个曲线的梯度相等的点

  (2)等周长问题,大意是在两个固定点之间划一条长度固定的曲线,使得曲线与x轴之间的面积最大。拉格朗日函数中含有积分,最终解是一个曲线函数,问题可以用“函数抖动”《calculus of variations》 来解,即把任一点的函数值有 f 变为 f + deltaf; 最优曲线要求deltaf趋向于0. 最终解是一个曲率处处相等的曲线(指向或园的一部分)

     (3) 那个单变量分布具有最大的商,结果很自然的是正太分布(normal distribution)

   (4)线性限制下的最大熵问题, 得到的结果是指数分布,导致了逻辑回归( logistic regression)的诞生

 

这是我写的第一篇博客,希望看的人能看懂   

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值