初识-朗格朗日乘子法

朗格朗日乘子法

拉格朗日乘子法 (Lagrange multipliers)是一种寻找多元函数在一组约束下的极值的方法.通过引入拉格朗日乘子,可将有 d 个变量与 k 个约束条件的最优化问题转化为具有 d + k 个变量的无约束优化问题求解。

本文希望通过一个直观简单的例子尽力解释拉格朗日乘子法和KKT条件的原理。


以包含一个变量一个约束的简单优化问题为例。

如图所示,我们的目标函数是 f ( x ) = x 2 + 4 x − 1 f(x)=x^2+4x−1 f(x)=x2+4x1,讨论两种约束条件𝑔(𝑥)g(x):

  1. 在满足x≤−1 约束条件下求目标函数的最小值;

  2. 在满足 x≥−1约束条件g(x)下求目标函数的最小值。


image-20200107233114156

img

我们可以直观的从图中得到,

  • 对于约束 1) 使目标值f(x)最小的最优解是x=−2;
  • 对于约束 2) 使目标值f(x)最小的最优解是x=−1。

下面我们用拉格朗日乘子来求解这个最优解。

当没有约束的时候,我们可以直接令目标函数的导数为0,求最优值。

可现在有约束,那怎么边考虑约束边求目标函数最优值呢?

  • 最直观的办法是把约束放进目标函数里,由于本例中只有一个约束,所以引入一个朗格朗日乘子λ,构造一个新的函数,拉格朗日函数h(x),
    • h ( x ) = f ( x ) + λ g ( x ) h(x)=f(x)+λg(x) h(x)=f(x)+λg(x)

该拉格朗日函数h(x)最优解可能在g(x)<0区域中,或者在边界g(x)=0上,下面具体分析这两种情况,

  • 当g(x)<0时,也就是最优解在g(x)<0区域中, 对应约束1) x≤−1的情况。此时约束对求目标函数最小值不起作用,等价于λ=0,直接通过条件∇𝑓(𝑥∗)=0,得拉格朗日函数h(x)最优解x=−2。
  • 当g(x)=0时,也就是最优解在边界g(x)=0上,对应约束1) x≥−1的情况。此时不等式约束转换为等式约束,也就是在λ>0、约束起作用的情况下,通过求∇𝑓(𝑥∗)+𝜆∇𝑔(𝑥∗)=0,得拉格朗日函数h(x)最优解x=−1。

所以整合这两种情况,必须满足λg(x)=0

因此约束g(x)最小化f(x)的优化问题,可通过引入拉格朗日因子转化为在如下约束下,最小化拉格朗日函数h(x),

image-20200107234016388

上述约束条件成为KKT条件。

该KKT条件可扩展到多个等式约束和不等式约束的优化问题。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

【文言】

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值