第一章 行列式

二 三阶行列式


∣ a 11 , a 12 a 21 , a 22 ∣ \left| \begin{matrix} a_{11},a_{12}\\ a_{21},a_{22} \\ \end{matrix} \right| a11,a12a21,a22
一个二阶行列式,即
∣ a 11 , a 12 a 21 , a 22 ∣ = a 11 a 22 − a 12 a 21 , \left| \begin{matrix} a_{11},a_{12}\\ a_{21},a_{22}\\ \end{matrix} \right|=a_{11} a_{22}-a_{12} a_{21} , a11,a12a21,a22 =a11a22a12a21,

也称其为方程组的系数行列式
与二阶行列式类似,我们称记号
∣ a 11 , a 12 , a 13 a 21 , a 22 , a 23 a 31 , a 32 , a a 33 ∣ \left| \begin{matrix} a_{11},a_{12},a_{13}\\ a_{21},a_{22},a_{23}\\ a_{31},a_{32},a_{a33} \end{matrix} \right| a11,a12,a13a21,a22,a23a31,a32,aa33
为一个三阶行列式,它是由3行3列共9个数组成的,代表所有位于不同行不同列的3个数乘积的代数和,即
∣ a 11 , a 12 , a 13 a 21 , a 22 , a 23 a 31 , a 32 , a a 33 ∣ = a 11 a 22 a 33 + a 21 a 23 a 31 + a 13 a 21 a 32 − a 11 a 23 a 32 − a 12 a 21 a 33 − a 12 a 22 a 31 \left| \begin{matrix} a_{11},a_{12},a_{13}\\ a_{21},a_{22},a_{23}\\ a_{31},a_{32},a_{a33} \end{matrix} \right|=a_{11}a_{22}a_{33}+a_{21}a_{23}a_{31}+a_{13}a_{21}a_{32}-a_{11}a_{23}a_{32}-a_{12}a_{21}a_{33}-a_{12}a_{22}a_{31} a11,a12,a13a21,a22,a23a31,a32,aa33 =a11a22a33+a21a23a31+a13a21a32a11a23a32a12a21a33a12a22a31

1.1 2n阶行列式及元素的余子式与代数余子式的定义

(1)一个n阶行列式是由n行n列共 n 2 n^{2} n2个数组成的,这 n 2 n^{2} n2个数也称为行列式的元素,其中,位于第i行第j列交叉点上的元素,称为行列式的(i,j)元素,如果(i,j)元素为aij(其中第一个下标i称为行标,表示 a i j a_{ij} aij所在的行第2个下j称为列标,表示所在的列,i,j =1,2,3,……n),则n阶行列式可记作
∣ a 11 , a 12 , … … , a 1 n a 21 , a 22 , … … , a 2 n . . . a n 1 , a n 2 , … … , a n n ∣ \left| \begin{matrix} a_{11},a_{12},……,a_{1n}\\ a_{21},a_{22},……,a_{2n}\\ .\\ .\\ .\\ a_{n1},a_{n2},……,a_{nn} \end{matrix} \right| a11,a12,……,a1na21,a22,……,a2n...an1,an2,……,ann
(2)
∣ a 11 , a 12 , … … , a 1 n a 21 , a 22 , … … , a 2 n . . . a n 1 , a n 2 , … … , a n n ∣ \left| \begin{matrix} a_{11},a_{12},……,a_{1n}\\ a_{21},a_{22},……,a_{2n}\\ .\\ .\\ .\\ a_{n1},a_{n2},……,a_{nn} \end{matrix} \right| a11,a12,……,a1na21,a22,……,a2n...an1,an2,……,ann
的第i行和第j列元素全部划去,由剩下的 ( n − 1 ) 2 (n-1)^2 (n1)2个元素按原来的相对位置组成的n-1阶行列式,称为元素 a i j a_{ij} aij的余子式,记作 M i j ( i , j = 1 , 2 , 3 , 4 , 5 … … r ) M_{ij}(i,j=1,2,3,4,5……r) Mij(i,j=1,2,3,4,5……r)
A = ( − 1 ) i + j M i j A=(-1)^{i+j}M_{ij} A=(1)i+jMij,称为 A i j A_{ij} Aij为无 a i j a_{ij} aij的代数余子式(i,j=1,2,3,4……,n)
(3) 如果一阶行列式定义为 ∣ a 11 ∣ = a 11 |a_{11}|=a_{11} a11=a11并假设 n − 1 ( n ≧ 2 ) n-1(n\geqq2) n1(n2) 阶行列式已有定义,则 n ( n ≧ 2 ) n(n\geqq2) n(n2)行列式
∣ a 11 , a 12 , … … , a 1 n a 21 , a 22 , … … , a 2 n . . . a n 1 , a n 2 , … … , a n n ∣ = a 11 A 11 + a 12 A 12 + … … + a 1 n A 1 n = ∑ j = 1 n a 1 j A 1 j \left| \begin{matrix} a_{11},a_{12},……,a_{1n}\\ a_{21},a_{22},……,a_{2n}\\ .\\ .\\ .\\ a_{n1},a_{n2},……,a_{nn} \end{matrix} \right|=a_{11}A_{11}+a_{12}A_{12}+……+a_{1n}A_{1n}=\sum_{j=1}^{n}a_{1j}A_{1j} a11,a12,……,a1na21,a22,……,a2n...an1,an2,……,ann =a11A11+a12A12+……+a1nA1n=j=1na1jA1j
3.上下三角形行列式的计算公式
∣ a 11 , 0 , 0 , 0 … … , 0 a 21 , a 22 , 0 , 0 , … … 0 . . . . . . . . a n 1 , a a n 2 , . . . . . . . . . . a n n ∣ = ∣ a 11 , a 12 , . . . . . . . . . . . . . . . a 1 n 0 , a 22 , . . . . . . . . . . . . . . . . . . . . . . . . a 2 n . . . . . . . . . . . . 0 , 0 , 0................ , 0 , 0 , a n n ∣ = a 11 ∗ a 22 ∗ . . . . . ∗ a n n \left| \begin{matrix} a_{11},0,0,0……,0 \\ a_{21},a_{22},0,0,……0\\ ...\\ ...\\ ..\\ a_{n1},a_{a_n2},.......... a_{nn} \end{matrix} \right|= \left| \begin{matrix} a_{11},a_{12},...............a_{1n}\\ 0,a_{22},........................a_{2n}\\ ....\\ ....\\ ....\\ 0,0,0................,0,0,a_{nn}\\ \end{matrix} \right|=a_{11}*a{22}*.....*a_{nn}\\ a11,0,0,0……,0a21,a22,0,0,……0........an1,aan2,..........ann = a11,a12,...............a1n0,a22,........................a2n............0,0,0................,0,0,ann =a11a22.....ann

∣ a 11 , a 12 , a 13 , . . . a 1 n a 21 , a 22 , 0 , 0 , … … 0 . . . . . . a n 1 , 0 , 0 , 0.....0 ∣ = ∣ 0 , 0 , 0............... a 1 n 0 , 0 , 0.......... a 2 ( n − 1 ) , a 2 n . . . . . . . . . . . a n 1 . . . . . . . . a n ( n − 1 ) , a n n ∣ = ( − 1 ) n ( n − 1 ) 2 a 1 n a 2 n − 1 . . . a n 1 \left| \begin{matrix} a_{11} ,a_{12}, a_{13} ,... a_{1n}\\ a_{21} ,a_{22}, 0,0,……0\\ ...\\ ...\\ a_{n1},0,0,0 .....0\\ \end{matrix} \right|= \left| \begin{matrix} 0,0,0...............a_{1n}\\ 0,0,0..........a_{2(n-1)},a_{2n}\\ ....\\ ...\\ ....\\ a_{n1}........a_{n(n-1)},a_{nn}\\ \end{matrix} \right| =(-1)^{\frac{n(n-1)}{2}}a_{1n}a_{2n-1}...a_{n1} a11,a12,a13,...a1na21,a22,0,0,……0......an1,0,0,0.....0 = 0,0,0...............a1n0,0,0..........a2(n1),a2n...........an1........an(n1),ann =(1)2n(n1)a1na2n1...an1

1.2行列式性质

1.行列式的性质
(1)行列互换,行列式的值不变

 (2)  行列式某一行(或某一列)的公因子,可以提到行列式外。

(3)交换行列式的某两行(或某两列),行列式反号

(4)如果行列式有两行(或两列)元素相同,则行列式的值为0

(5)如果行列式某两行(或某两列)元素成比例,则行列式的值为0

(6)如果行列式某一行(或某一列)元素是组数的和,则此行列式等于两个
行列式的和,这两个行列式的这一行(或一列)分别是第1组数和第2组数,而其余各行(或各列)与原来的行列式的相应各行(或各列)相同。

(7)将行列式某行(或某列)的k倍加到另一行(或另一列)上行列式的值不变。

2 . 利用行列式的性质计算行列式
利用行列式的性质计算行列式时,主要采用将所给的行列式化为上(或下)三角形行列式,这是计算行列式的基本方法之一,这种方法也称为三角形法。

1.3行列式按一行(或一列)展开。

1。行列式按一行(或一列)展开计算公式。
(1) n ( n ≧ 2 ) n(n\geqq2) n(n2) 阶行列式等于它的第i行元素与自己的代数余子式的乘积之和,其中 i =1,2,3,,,,,n

(2) n ( n ≧ 2 ) n(n\geqq2) n(n2)阶行列式等 于它的第j列元素与自己的代数余子式的乘积之和,其中j=1,2,3,,,,,,,,n

(3)如果行列式有一行(或一列)元素全为0,则该行列式的值为0

(4) n ( n ≧ 2 ) n(n\geqq2) n(n2)阶行列式的第i行元与第k行 ( k ≠ i ) (k\neq i) k=i元素的代数余子式的乘积之和为0。

(5) n ( n ≧ 2 ) n(n\geqq2) n(n2)阶行列式的第j列元素与第l列( l ≠ k l\neq k l=k)元素的代数余子式的乘积和为0

a 1 j A 1 l + a 2 j A 2 l + . . . + a n j A n l = 0. a_{1j}A_{1l}+a_{2j}A_{2l}+...+a_{nj}A_{nl}=0. a1jA1l+a2jA2l+...+anjAnl=0.

2 三阶范德蒙德(Vandermonde)行列式
∣ 1 , 1 , 1 a 1 , a 2 , a 3 a 1 2 , a 2 2 , a 3 2 ∣ = ( a 3 − a 2 ) ( a 3 − a 1 ) ( a 2 − a 1 ) \left| \begin{matrix} 1,1,1\\ a_{1},a_{2},a_{3}\\ a_{1}^{2},a_{2}^{2},a_{3}^{2}\\ \end{matrix} \right|=(a_{3}-a_{2})(a_{3}-a_{1})(a_{2}-a_{1}) 1,1,1a1,a2,a3a12,a22,a32 =(a3a2)(a3a1)(a2a1)

任意的 n ( n ≧ 2 ) n(n\geqq 2) n(n2) 阶范德蒙德行列式等 于 a 1 , a 2 , . . . . . . a n a_{1},a_{2},......a_{n} a1,a2,......an这个n个数的所有可能的差 a i − a j ( 1 ≦ j ≦ i ≦ n ) a_{i}-a_{j}(1\leqq j \leqq i \leqq n) aiaj(1jin) 的乘积

1.5 克拉默(Gramer)法则

如果由n个方程组成的n元线性方程组

f ( x ) = { a 11 x 1 + a 12 x 2 + . . . a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + . . . a 2 n x n = b 2 . . . . . . . . . . . . a n 1 x 1 + a n 2 x 2 . . . . a n n x n = b n f(x)=\left\{ \begin{aligned} a_{11}x_{1}+a{12}x_2+... a_{1n}x_{n}=b_1\\ a_{21}x_{1}+a_{22}x_2+...a_{2n}x_{n}=b_2\\ ....\\ ....\\ ....\\ a_{n1}x_{1}+a_{n2}x_{2}....a_{nn}x_{n}=b_n \end{aligned} \right. f(x)= a11x1+a12x2+...a1nxn=b1a21x1+a22x2+...a2nxn=b2............an1x1+an2x2....annxn=bn

的系数行列式
∣ a 11 , a 12 , a 13 . a 14 , . . . . a 1 n a 21 , a 22 , a 23 , a 24 , . . . . a 2 n . . . . . . . . . a n 1 , a n 2 , a n 3 , a n 4 , . . . . . a n n ∣ ≠ 0 , \left| \begin{matrix} a_{11},a_{12},a_{13}.a_{14},....a_{1n}\\ a_{21},a_{22},a_{23},a_{24},....a_{2n}\\ ...\\...\\...\\ a_{n1},a_{n2},a{n3},a_{n4},.....a_{nn}\\ \end{matrix} \right|\neq0, a11,a12,a13.a14,....a1na21,a22,a23,a24,....a2n.........an1,an2,an3,an4,.....ann =0,
则方程组有唯 解,并且。
$$
x_{j}=\frac{|B_{j}|}{|A_{}|} (j=1,2,3…,n)

$$

(2)式中,记号
∣ A ∣ = ∣ a 11 , a 12 , a 13 . . . . . . a 1 n a 21 , a 22 , a 23 . . . . . . a 2 n . . . . . . . . . . a n 1 , a n 2 , a n 3 . . . . . . a n n ∣ , ∣ B j ∣ = ∣ a 11 . . . . a 1 j − 1 , b 1 , a 1 j + 1 . . . . . a 1 n a 21 . . . . a 1 j − 1 , b 1 , a 1 j + 1 . . . . . a 1 n . . . . . . . . . . . a n 1 . . . . a n j − 1 , b 1 , a 1 j + 1 . . . . . a n n ∣ ( j = 1 , 2 , 3 , 4..... n ) |A|=\left| \begin{matrix} a_{11},a_{12},a_{13}......a_{1n}\\ a_{21},a_{22},a_{23}......a_{2n}\\ ...\\....\\...\\ a_{n1},a_{n2},a_{n3}......a_{nn} \end{matrix} \right|, |B_{j}|= \left| \begin{matrix} a_{11}....a_{1j-1},b_1,a_{1j+1}.....a_{1n}\\ a_{21}....a_{1j-1},b_1,a_{1j+1}.....a_{1n}\\ ....\\....\\...\\ a_{n1}....a_{nj-1},b_1,a_{1j+1}.....a_{nn}\\ \end{matrix} \right| (j=1,2,3,4.....n) A= a11,a12,a13......a1na21,a22,a23......a2n..........an1,an2,an3......ann ,Bj= a11....a1j1,b1,a1j+1.....a1na21....a1j1,b1,a1j+1.....a1n...........an1....anj1,b1,a1j+1.....ann (j=1,2,3,4.....n)
其中, ∣ B j ∣ |B_j| Bj是将系数行列式的第j列元素 a 1 j , a 2 j . . . . a n j a_{1j},a_{2j}....a{nj} a1j,a2j....anj换成了常数项 b 1 , b 2 , b 3 . . . . b n b_1,b_2,b_3....b_n b1,b2,b3....bn其他元素不变所对应的行列式。

如果 b 1 , b 2 , . . . b n b_1,b_2,...b_n b1,b2,...bn均为0 则称方程组(1)为齐次线性方程组
如果n元齐次线性方程组的系数行列式
∣ a 11 , a 12 , . . . . a 1 n a 21 , a 22 , . . . . a 2 n . . . . . . . . . a n 1 , a n 2 , . . . . a n n ∣ ≠ 0 \left| \begin{matrix} a_{11},a_{12},....a_{1n}\\ a_{21},a_{22},....a_{2n}\\ ...\\...\\...\\ a_{n1},a_{n2},....a_{nn}\\ \end{matrix} \right|\neq 0 a11,a12,....a1na21,a22,....a2n.........an1,an2,....ann =0
则齐次线性方程组有唯一零解。
如果n元齐次线性方程组有非零解,则方程组的系数行列式
∣ a 11 , a 12 , . . . a 1 n a 21 , a 21 , . . . a 2 n . . . . . . . . . a n 1 , a n 2 , . . . a n n ∣ = 0. \left| \begin{matrix} a_{11},a_{12},...a_{1n}\\ a_{21},a_{21},...a_{2n}\\ ...\\ ...\\ ...\\ a_{n1},a_{n2},...a_{nn}\\ \end{matrix} \right|=0. a11,a12,...a1na21,a21,...a2n.........an1,an2,...ann =0.

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值