一.二阶与三阶行列式
1.定义
行列式本质上讲就是一个数,它是不同行不同列元素乘积的代数和
在展开行列式的过程中,要注意行列式的正负号
2.应用
解二元线性方程组(克拉默法则)
3.习题
二.全排列与对换
1.全排列
n个不同元素排成一列称为n个元素得全排列
2.逆序数
一个排列中的所有逆序的总和称为这个排列的逆序数,记为τ(i1i2,...,in)
若τ为奇数,称为奇排列
若τ为偶数,称为偶排列
公式:元素ik前面比ik大的数的个数是元素ik的逆序数,τ(i1i2,...,in)是全体元素逆序数的总和
3.对换
在排列中,将任意两个元素对换,其余不动,称为对换
一个排列中的任意两个元素对换,排列改变奇偶性
奇排列变成标准排列的对换次数为奇数,偶排列变成标准排列的对换次数为偶数
4.习题
求抽象排列的逆序数
设排列x1x2,...,xn-1xn的逆序数为k,则xnxn-1,...,x2x1的逆序数是多少
解:
方法一:
排列x1x2,...,xn-1xn中,x1后面比x1小的数的个数为a1,则x1后面比x1大的数的个数为n-1-a1,所以排列为xnxn-1,...,x2x1中,x1前面比x1大的数的个数为n-1-a1
排列x1x2,...,xn-1xn中,x2后面比x2小的数的个数为a2,则x2后面比x2大的数的个数为n-2-a2,所以排列为xnxn-1,...,x2x1中,x2前面比x2大的数的个数为n-2-a2
以此类推
排列x1x2,...,xn-1xn中,xn-1后面比xn-1小的数的个数为an-1,则xn-1后面比xn-1大的数的个数为1-an-1,所以排列为xnxn-1,...,x2x1中,xn-1前面比xn-1大的数的个数为1-an-1
把所有的逆序数加起来得τ(xnxn-1,...,x2x1)=(n-1-a1)(n-2-a2)+...+(1-an-1)=(1+2+...+n-1)-(a1+a2+...+an-1)
由已知条件得,a1+a2+...+an-1=k
故τ(xnxn-1,...,x2x1)=n(n-1)/2-k
方法二:
因为任意两个元素在这两组中的任意一组必形成一个逆序,所以两个排列的逆序之和等于从n个元素的组合数,即Cn2=n(n-1)/2,再用该数减去第一组的逆序数总和k即可
三.n阶行列式的定义
1.定义
2.特殊行列式
3.习题
题型一:求行列式中的项
方法一:
对换项中元素的位置,使每项所对应的行标为自然顺序,即把所给的项改写为以列标排列的数组
例如a23a31a42a56a14a65,改写为a14a23a31a42a56a65
该列的列表所构成的排列为4 3 1 2 6 5,该排列的逆序数为6,为偶排列,故该项在六阶行列式展开式中均带正号
方法二:
行列式中某项的符号由该项行标逆序数与列标逆序数之和来确定,当该数为偶数时,符号为正,当该数为奇数时,符号为负
分别计算该列行标和列标构成的排列逆序数,即计算
2 3 4 5 1 6 ;3 1 2 6 4 5的逆序数
这两组排列的逆序数均为4,故该项带正号
题型二:写出n阶行列式中所有带负号且包含aij的项
解题思路:先设出要求的项,然后再根据奇偶性讨论
例:写出四阶行列式中所有带负号且包含a23的项
这样的项可以设为a1ia23a3ja4k,要使其带负号,当且仅当其列标所构成的排列i3jk为奇排列,而i,j,k只能取1,2,4中的数,例如取i=1,j=2,k=4,则得1324,它是一个奇排列,由于对换改变排列的奇偶性,所以可得4312和2341也是奇排列,而且,再也没有满足条件得别的奇排列,因此,所求的项是a11a23a32a44,a14a23a31a42,a12a23a34a41
题型三:含零元素较多的行列式可由定义计算
题型四:确定某些展开项的系数
四.行列式的性质
1.性质
性质一:行列式与它的转置行列式相等
DT=D
性质二:互换行列式的两行(列),行列式变号
交换i,j两行 交换i,j两列,
ri<->rj ci<->cj
推论:若行列式有两行(列)完全相同,则此行列式等于0
性质三:行列式的某一行(列)中的所有的元素都乘以同一数k,等于用数k乘以行列式
第i行乘以k记作ri*k
第i列乘以k记作ci*k
推论:行列式中某一行(列)的所有元素的公因子可以提到行列式记号的外面
性质四:行列式中若有两行(列)元素成比例,则此行列式等于0
性质五:若行列式的某一行(列)的元素都是两数之和,则行列式可以写成两个行列式之和
推论:若行列式某一行(列)的元素都是m(>=2)个数之和,则此行列式可以写成m个行列式之和
性质六:把行列式的某一行(列)的各元素乘以同一个数然后加到另一个行(列)对应的元素上面去,行列式不变
以数k乘第j行加到第i行上,记作ri+krj,以数k乘第j列加到第i列上,记作ci+kcj
2.习题
题型一:含零较多的行列式计算
题型二:行和或列和相等的行列式计算
解题思路:若有行列式各行(列)对应元素相加后相等,可以将2,3,4列加到第1列再提出公因子x后,进一步化简计算行列式
题型三:行或列有公因式的行列式计算
解题思路:观察行列式中元素的特点,若有多行(列)中有公因子,选择提出其中一行公因子,将该行(列)的n倍分别加在其他行(列)上,目的是为了化简行列式为特殊形式
题型四:“三线式”行列式计算(“爪型”“箭型”)
该种行列式是指除某一行,某一列和对角线或者次对角线不为0外,其余元素均为0的行列式
解题思路:将第i行(列)的n倍加到第i行(列),使其化简为特殊行列式
题型五:每个元素都是两项和的行列式计算
大部分题型都要分两种情况:
1.当n=2时
2.当n>2时
解题思路:注意观察行列式的元素,看分解后是否可以二次分解化简,也可以将第一行(列)乘以相应的数值加到其余各行(列),进行二次化简
大部分题最终答案都为0
题型六:行列式的证明
解题思路:逐行(列)相减法,从最后一行开始依次减去前面一行,再利用组合公式Cnk-Cn-1k-1=Cn-1k,逐渐化简行列式
五.行列式按行按(列)展开
1.定义
余子式:在n阶行列式中,把aij所在的第i行第j列划去后,留下的n-1阶行列式叫作aij的余子式,记作Mij
代数余子式:aij的代数余子式Aij=(-1)i+jMij
余子式Mij与代数余子式Aij仅与aij的位置(i,j)有关,而与aij的数值无关,Mij与Aij的关系与i+j的奇偶性有关
2.性质
n阶行列式D=aij等于它的任意一行(列)的各元素与其对应代数余子式乘积的和,即
D=ai1Ai1ai2Ai2,...,ainAin(i=1,2,...,n)
D=a1jA1ja2jA2j,...,anjAnj(j=1,2,...,n)
行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于0
3.习题
题型一:代数余子式的有关计算
题型二:直接用行列式按一行(列)展开定理计算行列式
题型三:用递推法计算行列式的值
解题思路:当行列式的结构具有重复性时,可通过对某一行(列)展开,把n阶行列式表示为具有相同的低阶行列式的线性关系式Dn=pDn-1+qDn-2或Dn=xDn-1+y,其中p,q,x,y为常数,再根据关系式依次类推求出所给n阶行列式的值
一.对n阶行列式递推时,若遇到Dn=pDn-2+q或Dn=αDn-2+βDn-4等递推公式,一定要对n的奇偶性进行讨论
二.展开行列式得到两个递推公式,然后解方程组得到通项
题型四:范德蒙德行列式法计算行列式
题型五:数学归纳法计算行列式
题型六:用加边法计算行列式的值
解题思路:加边法中加上的行(列)中一般只有一个1,其余元素全为0,保证加边后的行列式与原行列式相等,而加上的行(列)中元素必须能通过变化使其中行(列)大部分变为0,用以简化计算
也可以将第2,3,...,n行(列)加到第1行(列),然后利用行列式的性质化简求解
本章知识总结
1.关于行列式定义的小结
行列式可采用两种定义
一:行列式等于取自不同行不同列的n个元素的乘积的代数和
二:行列式等于某行(列)的每个元素与其对应代数余子式乘积的和
2.关于行列式计算的小结
行列式的计算是本章的重点和难点,根据行列式的特点选择正确的方法是计算行列式的关键,主要方法有:
(1)定义法:根据n阶行列式的定义直接计算行列式值的方法
(2)目标行列式法:把想要计算的行列式,利用行列式的性质化为能求值的特殊行列式,从而求得其值,一般常把三角行列式作为目标行列式
(3)降价法:应用行列式按行(列)展开定理,把高价行列式的计算转化为低阶行列式计算,具体计算中,总结先结合
(4)升阶法:根据要计算的行列式的特征,把原行列式加上一行一列,然后利用行列式的性质对行列式进行化简
(5)拆分法:把行列式适当的拆分成若干个同阶行列式之和,然后求各行列式的值,从而得到原行列式的值
(6)递推公式法:应用行列式的性质,把一个n阶行列式表示为具有相同结构的较低阶行列式的线性关系式,再根据此关系是递推求得所给n阶行列式的值
(7)归纳法:运用数学归纳法,归纳地求出行列式的值
在计算行列式值时,应按下列原则进行:
1.低阶行列式的计算常根据行或列元素的特点,或者化为上(下)三角形行列式计算,或者根据行列式展开定理使用降价法求解
2.n阶行列式的计算可使用定义或行列式的各种计算方法求解
3.所求行列式若某一行(列)至多有两个非零元素,则一般按此行(列)直接展开求解
4.经典例题
(1)
第一步:
将第一行乘以-1分别加到其余各行,得
第二步:
再将各列都加到第一列上,得
(2)
第一步:
将该行列式变换形式,变换后如图
该行列式为范德蒙德行列式
第二步:
按照范德蒙德公式列出对应式子:
(3)
第一步:
按第一行展开:
第二步: