线性代数第一章 行列式

d0754523282f4feaab6b611a52639b9f.png

1.逆序数:两个数的位置与大小顺序相反

2.二阶与三阶才能使用对角线法则计算

 3.692a42ee89a24f1f9d56f17787f1d2ab.png

D的某一行各元素与另一行对应元素的代数余子式(A)乘积之和为0

4.行列式的性质

1)行列式中一行(列)元素全为0,则行列式为0

2)若行列式有两行(列)成比例,则行列式为0

3)行列式的某一行(列)的元素都是两个数的和,则该行列式等于两个行列式的和(例p13)

4)互换行列式的两行(列),行列式改变符号

5)若两行(列)完全相同,则值为0

6)行列式与转置行列式的值相同 D = D的转置

7)某一行(列)的k倍加到另一行对应的元素上,值不变

5.转置行列式:行列互换

6.如果线性方程组无解或解不唯一,则D=0.

齐次方程:D = 0有非零解;D 不等于0只有零解;

齐次:只有零解说明有唯一解;有非零解说明有无穷多解。

64dfe442028c4886a9da23c9947126ca.png

项数:8的阶乘=40320 

若n阶行列式D中等于0的个数大于n²-n。则D = 0

第二章 矩阵

1.AE =A;AB =AC,A不等于0不能推出B = C;

2.矩阵乘法不满足消去律

3.矩阵的转置满足以下运算规则:

a3a4e23c98df448988ad03de557a8c2c.jpeg

 4.A是m×n的矩阵,左乘行变右乘列变

1)对A做一次初等行变换,相当于在A的左边乘上一个相应的m阶初等矩阵;

2)对A做一次初等列变换,相当于在A的右边×一个相应的n阶初等矩阵。

0294b8b5b95d4a83bf84ad1926bcda05.png

46405e193c404759b68840cf06cb164c.png5. D = 0不可逆

25c840ac1e2147f391c57b2533bc6907.png

 77562c68ce6d4ba68ee4dcd26157df52.png

6. 矩阵奇数阶,则|A| = 0

a6c1dd66695b4fbb99949fd98dc201aa.png

7.求A的逆公式:

ae9548d57e164cd19fe439b7f4408f8c.png

 8.矩阵的初等变换

1)互换矩阵任意两行(列)的位置

2)用非零数k乘矩阵的某一行(列)元素

3)用数k乘矩阵的某行(列)各元素加到另一行(列)对应的元素上,称为矩阵的初等行(列)变换 。

4)矩阵不可以只提一行的公因子。行列式可以只提一行的公因子,但矩阵不可以,要提的话,需要把整个矩阵的公因式提出来。

9.方阵的迹:主对角线之和,又称tr(A)。

10.行最简型:所有非零行的一个非零元素都是1,且其所在列的其余元素都是零的行阶梯型。

标准型:第一个非零元素都是1,且其所在行与列的其余元素都是零的行最简型。

11.若存在n阶方阵B使AB = BA = E,称A是可逆矩阵或A可逆

12.伴随矩阵AA* = A*A = |A|E

*伴随矩阵的构成:将矩阵A得主对角元素a,d交换位置,次对角线元素b,c添加负号即可。

13.矩阵的k阶子式:m×n矩阵A中k阶 子式的个数为C(m,k)×C(n,k)

***矩阵的秩:矩阵中非零子式的最高阶数r成为矩阵的秩。

矩阵的性质: 零矩阵的秩为零;

若r(A) = m(或n),则称A为行(列)满秩矩阵,行满秩或列满秩都成为满秩矩阵;否则A为降秩矩阵。

对于n阶方阵:r(A)= n时为满秩,r(A)< n时为降秩。

定理1:一个m×n矩阵A的秩为r的充分必要条件是有一个r阶子式不等于0,而所有r+1阶子式都等    于 0。显然,n阶方阵A为满秩(r(A)=n <=> |A| ≠ 0)

定理2:初等变换不改变矩阵的秩

1)两行互换;2)用非零数乘矩阵的某一行

**将矩阵用初等行变换化为行阶梯形,行阶梯形矩阵中非零行的个数即为矩阵的秩。

推理1:等价矩阵具有相同的秩

推理2:设A为m×n矩阵,则对m阶可逆矩阵P,n阶可逆矩阵Q,有r(PA) = r(AQ) = r(PAQ) = r(A)

推理3:r(A) = r <=>存在可逆矩阵PQ

14.伴随矩阵的秩与矩阵的秩的关系:原矩阵秩为n 伴随矩阵秩为n; 原矩阵秩为n-1 伴随为1; 原矩阵秩小于n-1伴随为0。

15.r(A)= n <=> |A| ≠ 0 <=> A可逆

矩阵的分块:非零元素为一块a877aaa85c66409fa85415d8c75e63a3.jpeg

16.列矩阵×行矩阵 = 行×列矩阵,行向量×列向量 = 数;

例:

17.可逆矩阵可以分解为有限个初等矩阵的乘积

第三章 向量方程组  

1.齐次线性方程组非零解条件:

 2.求通解:

3求解线性方程:

通过对增广矩阵进行初等行变换实现.实现过程:利用矩阵的初等行变换将A化为行阶梯形(消元过程),再继续施行初等行变换将行阶梯形化为行最简形,有最简式读出。

*仅限于初等行变换,这种变换不改变方程组的同解性。

4.线性方程组Ax = b有解的充要条件是系数矩阵A与增广矩阵A的秩相等,即r(A)= r(B),当r(A)= r(B)= n时,方程组有唯一解;当r(A)= r(B)< n 时,方程组有无穷多解。

5.

 6.

(1)当向量组所含向量的个数与向量的维数相等时,该向量组构成的行列式不为零的充分必要条件是该向量组线性无关;

(2)当向量组所含向量的个数多于向量的维数时,该向量组一定线性相关;

 (3)通过向量组的秩研究向量组的相关性。若向量组的秩等于向量的个数,则该向量组是线性无关的;若向量组的秩小于向量的个数,则该向量组是线性相关的。

(4)满秩(r(A)=n),对应的方程组有唯一解,因此向量组线性无关。

(5)如果向量组a线性无关,则其接长向量组b必线性无关

(6)若向量组1可有向量组2表示,且s>t,则1线性相关。

(7)可逆矩阵行列式不为0,所以其向量组是线性无关的。

7.向量组的值:等价的向量组具有相同的秩;矩阵A的秩等于它的向量组的秩,也等于他的行向量的秩。

 

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
线性代数第二版》是一本经典的线性代数教材。尽管它涵盖了众多线性代数的重要概念和理论,但是行列式是其中的一个关键内容。下面我将使用简洁的思维导图介绍一下《线性代数第二版》中关于行列式的知识点。 首先,在思维导图的中心,我们可以写下“行列式”这个概念。行列式是一个矩阵的重要性质,可以用一个标量来表示。行列式的计算可以按照一定的规则进行,其中最常见且重要的有三个:余子式、代数余子式和按行展开。 接下来,在思维导图的左侧,我们可以列出行列式的定义及其性质。行列式的定义是一个递归的过程,首先是1阶行列式为其唯一元素本身,然后是2阶行列式等于两个元素的交叉相减,以此类推。行列式的性质包括对换行性质、按列展开性质、按行展开性质等。这些性质能够帮助我们简化行列式的计算。 在思维导图的右侧,我们可以写下如何计算行列式的方法。最常用的方法是利用高斯消元法将行列式转化为上三角形矩阵,然后再进行求解。另外,我们也可以利用行列式的性质,如按行展开性质,来计算行列式的值。 最后,在思维导图的底部,我们可以列出行列式的应用领域。行列式不仅仅在线性代数中有重要的应用,还广泛应用于其他数学和工程领域。例如,在计算机图形学中,我们可以利用行列式来求解几何变换中的坐标变换等问题。 通过这个思维导图,我们可以清晰地了解到《线性代数第二版》中关于行列式的概念、性质、计算方法以及应用领域。希望这个简洁的导图能够帮助更多的人更好地理解行列式这一重要主题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值