实对称矩阵为正定矩阵的一个充分必要条件

本文是为了在学习凸优化的时候遇到的一个问题展开讨论的。目的是能够明白凸优化的理论基础,或者尽可能的明白它的理论基础。


1,对称矩阵的特征值是实数。

证明如下:(我是用latex编辑的,这里不能显示公式,所以我只能用图片了。


上面的证明可以说明对称矩阵的特征值一定是实数!


2、n阶方阵一定有n个特征跟(重跟按重数计算)

证明:

  设A是一个n阶的方阵,它的特征多项式是一个关于符号lambda的一个n次多项式,根据代数基本定理,它可以唯一的分解成一次因式的乘积。所以一定有n个复数跟。


3、n阶实对称矩阵一定有n个实特征跟(重跟按重数计算)

由1和2便可以得到这个结论。


4、对称矩阵,从属于不同特征值的特征向量正交。

证明:



5、设A为n阶对称矩阵,则必有正交矩阵P,使得P^{-1}AP = P'AP = B,其中B是以A的特征值为对角线元素的对角矩阵。

这个不证明。


6、n阶对称阵的k重特征值的特征空间的维数是k。


7、对称矩阵所有特征向量以及零向量可以组成的线性空间还是原空间!


8、总上结论,我们可以得到结论:

    实对称矩阵是非负定矩阵的充分必要条件是它的所有特征值都非负!!!

    实对称矩阵是正定矩阵的充分必要条件是它的所有特征值都大于0!!!

上面两个结论只需要用正定矩阵的定义和实对称矩阵的性质证明。









### 实对称矩阵的特征值与正定性的关系 当提到实对称矩阵时,其具有许多重要的性质。谱定理表明,每一个 \( n \times n \) 的实对称矩阵都可以通过一组标准正交基来表示,并且它的特征值均为实数[^1]。 进一步分析可知,如果一个实对称矩阵的所有特征值均大于零,则该矩阵必然是正定矩阵。这是因为正定矩阵一个重要定义是:对于任意非零向量 \( z \),均有 \( z^T M z > 0 \)[^3]。而根据谱分解理论,任何一个实对称矩阵 \( A \) 可以写成如下形式: \[ A = Q \Lambda Q^T \] 其中 \( Q \) 是由 \( A \) 的标准化特征向量组成的正交矩阵,\( \Lambda \) 是包含 \( A \) 的特征值的对角矩阵[^4]。由此可以看出,若所有特征值(即 \( \Lambda \) 中的对角元)均大于零,则对于任意非零向量 \( z \),有: \[ z^T A z = z^T (Q \Lambda Q^T) z = (Q^T z)^T \Lambda (Q^T z) \] 令 \( y = Q^T z \),由于 \( Q \) 是正交矩阵,所以 \( y \neq 0 \) 当且仅当 \( z \neq 0 \)。于是上述表达式变为: \[ y^T \Lambda y = \sum_{i=1}^{n} \lambda_i y_i^2 \] 这里 \( \lambda_i > 0 \) 表示所有的特征值均大于零。因此,只要 \( y_i \neq 0 \),就有 \( y^T \Lambda y > 0 \),从而得出 \( z^T A z > 0 \) 成立[^3]。 综上所述,在满足所有前提条件下,实对称矩阵的特征值全为正值确实是判断其为正定矩阵的重要依据之一。 ```python import numpy as np # 创建一个简单的实对称矩阵并验证其是否正定 matrix_A = np.array([[2, -1], [-1, 2]]) eigenvalues = np.linalg.eigvals(matrix_A) print("Eigenvalues:", eigenvalues) is_positive_definite = all(eigenvalue > 0 for eigenvalue in eigenvalues) print("Is matrix positive definite?", is_positive_definite) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值