腾讯ima知识库又更新了,无限容量真的香!

你是不是也有这样的烦恼?各种文件资料像洪水一样涌进你的电脑,却找不到一个好用的工具来管理它们?或者你已经开始用腾讯ima知识库,但总在为那可怜的2G存储空间发愁?

我懂,真的太懂了!作为一个资料收集控,我的电脑里塞满了各种PDF、文档和收藏的文章,就像一个数字版的囤积症患者

每天都在想:“这资料好像有用,先存着吧”,结果就是存了一大堆,用的时候却找不到。

不过,好消息来了!3月7日,腾讯ima来了个重磅更新,我第一时间体验后只想说:这波操作,真香

[tu]

史诗级更新,存储空间无限!

这次ima更新了三个重要功能:

首先,上线了知识库广场,你可以浏览和搜索各个领域的知识库,找到自己感兴趣的内容;

其次,只要你把知识库发布到广场,就能获得免费无限扩容,不再占用个人云存储空间;

最后,单个共享知识库成员上限扩大到100万,这基本上就是无限制了。

[配图]

简单来说,腾讯给我们送了一个"知识无限卡"!

只要你愿意分享,就能获得无限空间,这波操作太良心了!

我原以为腾讯会走收费扩容的路线(毕竟2G真的不够用),结果他们选择了"共享即无限"的模式,双击666!

实操体验:知识广场真的香!

[拼图]

更新客户端后,我第一时间点进了发现功能,进入知识库广场。

在这里,我搜索了"DeepSeek"(最近超火的AI模型),立刻找到了好几个高质量知识库。

随手点开一个知识库,我惊呆了:里面居然齐全了清华、北大、厦大出品的DeepSeek手册!

以前我还在各大营销号下面苦苦求资料,现在直接在广场就能一键获取,而且完全免费

更爽的是,ima不只是让你下载资料,你还可以直接用DeepSeek R1基于这些文件进行问答。

在这里插入图片描述

比如我打开了一个某个DeepSeek知识库,右侧提问请帮我列出清华、北大、厦大出品的DeepSeek手册,ima立刻给我总结了文件的核心内容,甚至还能生成思维导图。

这种学习体验简直是开挂!

分享知识,打造你的个人IP

如果你也想分享自己的知识库,操作超简单:

[拼图]

1️⃣ 先创建一个共享知识库

2️⃣ 然后进入"权限管理"设置,选择"发布到广场"就可以了

3️⃣ 发布后,你的知识库就会出现在广场上,任何人都能搜索到

这对我们普通人来说,其实是一个绝佳的IP建设机会。例如:

  • 自媒体博主可以将多年整理的行业资料发布为专业知识库,吸引精准用户关注
  • 学生可以加入考研万人知识库库,与全国考生共享真题解析和学习笔记等
  • 专业人士可以建立自己领域的知识库,树立行业专家形象

更重要的是,这些都可能成为未来变现的渠道。当你的知识库积累了足够的用户后,可以通过付费咨询、课程或者其他形式进行变现。

对日常工作学习的改变

现在我已经完全用ima替代了印象笔记的收藏功能。

以前看到好文章只是机械地收藏到笔记软件,然后就是收藏即遗忘。但有了ima后,我可以毫无顾虑地收集内容,因为:

1️⃣ 不用担心空间不足(分享即无限)

2️⃣ 收集的内容真的能用起来(AI问答+总结功能让信息更易消化)

3️⃣ 跨平台同步超方便(微信小程序、APP、PC端全覆盖)

[配图]

最近我发现一个有趣的变化:我不再有信息焦虑了。

以前面对海量信息,总担心错过重要内容,现在我知道即使暂时没时间阅读!

结语

[ima配图]

回顾ima的迭代历程,从最初的简单问答,到上传知识库,再到区分个人和团队知识库,直到现在的知识库广场,整个路径非常清晰。

这次更新其实体现了腾讯对知识民主化的思考——通过AI赋能,让专业知识的获取和应用变得更加平等和便捷。当知识从私域存储转向公域共享人人都有机会接触到高质量的知识资源

同时,这也是腾讯在AI工具大战中的关键一役。通过接入DeepSeek、混元T1等模型,以及建立庞大的知识生态,ima正在打造一个闭环的知识管理平台。可惜大多数人还没意识到这个工具的威力。

AI时代,个体的能力边界正在被重新定义。好比移动互联网时代催生了无数自媒体一样,AI时代也将催生更多超级个体。而ima这样的工具,正是帮助普通人成为超级个体的重要助力

如果你还没尝试过ima,真的不要再等了,这可能是目前国内最强大的免费知识管理工具!赶紧去体验一下,你会发现:原来知识管理还可以这么香!

### 腾讯 IMA 底层技术架构及原理 腾讯 IMA 的底层技术实现主要依赖于腾讯多年积累的大规模数据处理能力以及先进的自然语言处理技术和多模态学习框架。以下是对其核心技术架构和原理的具体分析: #### 1. 数据驱动的知识引擎 腾讯 IMA 的核心之一是一个强大的知识引擎,该引擎能够高效地处理海量的技术文档和其他形式的数据[^1]。通过这种大规模的数据处理能力,IMA 可以为用户提供精准的信息检索服务,并支持 API 的深度集成。 #### 2. 大模型的应用与优化 在实际开发过程中,大模型被广泛应用于各种场景下的任务解决。尽管具体到 IMA 的内部结构可能并未完全公开,但从已有资料可以推测,它采用了类似于 Transformer 架构的预训练模型来完成复杂的语义理解和生成任务[^2]。这些模型经过大量无标注文本的自监督学习后,在特定领域进一步微调以适应具体的业务需求。 #### 3. 智能办公中的关键技术——知识流动化 为了实现更高效的智能办公体验,“知识流动化”成为了 ima.copilot 设计的重要理念之一[^3]。这意味着系统不仅限于简单的问答功能,而是致力于构建一个完整的生态系统,在这个系统里,所有的信息都能够无缝连接并动态更新。例如,当某个员工提交了一份新的报告或者修改了一段代码之后,其他相关人员都可以即时获取最新版本的内容摘要及其关联背景材料。 #### 4. 生态系统的融合与发展展望 随着 AI 技术不断进步,预计在未来几年内(如至2025年),像 ima 这样的智能化工具将会更加深入地融入人们的日常工作流程当中,成为不可或缺的一部分。它们不仅能显著提高个体工作者的任务执行速度与质量,还能促进跨部门之间的沟通合作效率提升。 ```python # 示例:假设这是用于模拟简单版知识提取过程的一个小型脚本 from transformers import pipeline nlp = pipeline('question-answering') context = """ The knowledge engine of Tencent's large model processes massive amounts of data efficiently. """ question = "What does the knowledge engine process?" result = nlp({ 'question': question, 'context': context }) print(result['answer']) ``` 以上代码片段展示了如何利用 Hugging Face 提供的 `transformers` 库快速搭建起基于预训练模型的问题解答程序。这只是一个非常基础的例子,而真正工业级的产品则需要考虑更多复杂因素比如性能优化、安全性保障等方面。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值